Unveiling heterogeneity of hysteresis in perovskite thin films.

Discov Nano

Industrial Training Center, Shenzhen Polytechnic University, Shenzhen, 518055, Guangdong, China.

Published: March 2024

The phenomenon of current-voltage hysteresis observed in perovskite-based optoelectronic devices is a critical issue that complicates the accurate assessment of device parameters, thereby impacting performance and applicability. Despite extensive research efforts aimed at deciphering the origins of hysteresis, its underlying causes remain a subject of considerable debate. By employing nanoscale investigations to elucidate the relationship between hysteresis and morphological characteristics, this study offers a detailed exploration of photocurrent-voltage hysteresis at the nanoscale within perovskite optoelectronic devices. Through the meticulous analysis of localized I-V curve arrays, our research identifies two principal hysteresis descriptors, uncovering a predominantly inverted hysteresis pattern in 87% of the locations examined. This pattern is primarily attributed to the energetic barrier encountered at the interface between the probe and the perovskite material. Our findings underscore the pronounced heterogeneity and grain-dependent variability inherent in hysteresis behavior, evidenced by an average Hysteresis Index value of 0.24. The investigation suggests that the localized hysteresis phenomena cannot be exclusively attributed to either photocharge collection processes or organic cation migration at grain boundaries. Instead, it appears significantly influenced by localized surface trap states, which play a pivotal role in modulating electron and hole current dynamics. By identifying the key factors contributing to hysteresis, such as localized surface trap states and their influence on electron and hole current dynamics, our findings pave the way for targeted strategies to mitigate these effects. This includes the development of novel materials and device architectures designed to minimize energy barriers and enhance charge carrier mobility, thereby improving device performance and longevity. This breakthrough in understanding the microscale mechanisms of hysteresis underscores the critical importance of surface/interface defect trap passivation in mitigating hysteretic effects, offering new pathways for enhancing the performance of perovskite solar cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948732PMC
http://dx.doi.org/10.1186/s11671-024-03996-9DOI Listing

Publication Analysis

Top Keywords

hysteresis
12
optoelectronic devices
8
localized surface
8
surface trap
8
trap states
8
electron hole
8
hole current
8
current dynamics
8
unveiling heterogeneity
4
heterogeneity hysteresis
4

Similar Publications

Macrophages undergo polarization, resulting in distinct phenotypes. These transitions, including de-/repolarization, lead to hysteresis, where cells retain genetic and epigenetic signatures of previous states, influencing macrophage function. We previously identified a set of interferon-stimulated genes (ISGs) associated with high lipid levels in macrophages that exhibited hysteresis following M1 polarization, suggesting potential alterations in lipid metabolism.

View Article and Find Full Text PDF

We have executed a cost-effective approach to produce a high-performance multifunctional human-machine interface (HMI) humidity sensor. The designed sensors were ecofriendly, flexible, and highly sensitive to variability in relative humidity (%RH) in the surroundings. In this study, we have introduced a humidity sensor by using carbon paper (as both a substrate and sensing material) and a silver (Ag) conductive ink pen.

View Article and Find Full Text PDF

Dimer Is Not Double: The Unexpected Behavior of Two-Floor Peptide Nanosponge.

Molecules

December 2024

Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 00133 Rome, Italy.

Using the framework of an investigation of the stimuli-responsive behavior of peptide assembly on a solid surface, this study on the behavior of a chemisorbed peptide on a gold surface was performed. The studied peptide is a dimeric form of the antimicrobial peptide Trichogin GAIV, which was also modified by substituting the glycine with lysine residues, while the N-terminus octanoyl group was replaced by a lipoic one that was able to bind to the gold surface. In this way, a chemically linked peptide assembly that is pH-responsive was obtained because of the protonation/deprotonation of the sidechains of the Lys residues.

View Article and Find Full Text PDF

Application of partially zwitterionic poly(ionic liquid)s in humidity sensors.

J Colloid Interface Sci

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 PR China. Electronic address:

Polyelectrolytes have shown promise as sensitive material for high-performance humidity sensors in recent years. How to obtain fast recovery and high sensitivity polyelectrolyte humidity sensors is a great challenge. A kind of poly(ionic liquid)s (PILs) humidity sensors modified by zwitterionic polymers (partially zwitterionic PILs, named PZPILs) were prepared in this work.

View Article and Find Full Text PDF

A stacked nanocomposite zinc-tin oxide/single-walled carbon nanotubes (ZTO/SWNTs) active layer was fabricated for thin-film transistors (TFTs) as an alternative to the conventional single-layer structure of mixed ZTO and SWNTs. The stacked nanocomposite of the solution-processed TFTs was prepared using UV/O treatment and multiple annealing steps for each layer. The electrical properties of the stacked device were superior to those of the single-layer TFT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!