Nat Cell Biol
Department of Cell and Developmental Biology, University College London, London, UK.
Published: April 2024
Embryonic induction is a key mechanism in development that corresponds to an interaction between a signalling and a responding tissue, causing a change in the direction of differentiation by the responding tissue. Considerable progress has been achieved in identifying inductive signals, yet how tissues control their responsiveness to these signals, known as competence, remains poorly understood. While the role of molecular signals in competence has been studied, how tissue mechanics influence competence remains unexplored. Here we investigate the role of hydrostatic pressure in controlling competence in neural crest cells, an embryonic cell population. We show that neural crest competence decreases concomitantly with an increase in the hydrostatic pressure of the blastocoel, an embryonic cavity in contact with the prospective neural crest. By manipulating hydrostatic pressure in vivo, we show that this increase leads to the inhibition of Yap signalling and impairs Wnt activation in the responding tissue, which would be required for neural crest induction. We further show that hydrostatic pressure controls neural crest induction in amphibian and mouse embryos and in human cells, suggesting a conserved mechanism across vertebrates. Our work sets out how tissue mechanics can interplay with signalling pathways to regulate embryonic competence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021196 | PMC |
http://dx.doi.org/10.1038/s41556-024-01378-y | DOI Listing |
J Transl Med
January 2025
Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands.
Background: Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking.
View Article and Find Full Text PDFDev Biol
January 2025
University of Aberdeen, School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK. Electronic address:
Signals from the lens regulate multiple aspects of eye development, including establishment of eye size, patterning of the presumptive iris and ciliary body in the anterior optic cup and migration and differentiation of neural crest cells. To advance understanding of the molecular mechanism by which the lens regulates eye development, we performed transcriptome profiling of embryonic chicken retinas after lens removal. Genes associated with nervous system development were upregulated in lens-removed eyes, but the presumptive ciliary body and iris region did not adopt a neural retina identity following lens removal.
View Article and Find Full Text PDFJ Cutan Pathol
January 2025
Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Background: Merkel cell carcinoma (MCC) is a rare, aggressive cutaneous malignancy with neuroendocrine differentiation. Several molecular pathways have been implicated in MCC development and multiple cell-of-origin candidates have been proposed, including neural crest cells, which express acetylcholine receptors (AChRs). The role of nicotinic acetylcholine receptors (nAChRs) in MCC has not been explored.
View Article and Find Full Text PDFVirchows Arch
January 2025
Division of Pediatric and Perinatal Pathology/Department of Pathology and Laboratory Medicine, Jackson Memorial Hospital Children's Holtz, University of Miami Miller School of Medicine, 1611 NW 12 Ave., Suite 2153, Miami, FL, 33136, USA.
Cell Tissue Res
January 2025
Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan.
Adult tissue stem cells of the anterior pituitary gland, CD9/SOX2-positive cells, are believed to exist in the marginal cell layer (MCL) bordering the residual lumen of the Rathke's pouch. These cells migrate from the intermediate lobe side of the MCL (IL-MCL) to the anterior lobe side of the MCL and may be involved in supplying hormone-producing cells. Previous studies reported that some SOX2-positive cells of the anterior lobe differentiate into skeletal muscle cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.