Development strategy of non-GMO organism for increased hemoproteins in Corynebacterium glutamicum: a growth-acceleration-targeted evolution.

Bioprocess Biosyst Eng

Research Group of Novel Food Ingredients for Alternative Proteins, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea.

Published: April 2024

Heme, found in hemoproteins, is a valuable source of iron, an essential mineral. The need for an alternative hemoprotein source has emerged due to the inherent risks of large-scale livestock farming and animal proteins. Corynebacterium glutamicum, regarded for Qualified Presumption of Safety or Generally Recognized as Safe, can biosynthesize hemoproteins. C. glutamicum single-cell protein (SCP) can be a valuable alternative hemoprotein for supplying heme iron without adversely affecting blood fat levels. We constructed the chemostat culture system to increase hemoprotein content in C. glutamicum SCP. Through adaptive evolution, hemoprotein levels could be naturally increased to address oxidative stress resulting from enhanced growth rate. In addition, we used several specific plasmids containing growth-accelerating genes and the hemA promoter to expedite the evolutionary process. Following chemostat culture for 15 days, the plasmid in selected descendants was cured. The evolved strains showed improved specific growth rates from 0.59 h to 0.62 h, 20% enhanced resistance to oxidative stress, and increased heme concentration from 12.95 µg/g-DCW to 14.22-15.24 µg/g-DCW. Notably, the putative peptidyl-tRNA hydrolase-based evolved strain manifested the most significant increase (30%) of hemoproteins. This is the first report presenting the potential of a growth-acceleration-targeted evolution (GATE) strategy for developing non-GMO industrial strains with increased bio-product productivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11003892PMC
http://dx.doi.org/10.1007/s00449-024-02986-6DOI Listing

Publication Analysis

Top Keywords

corynebacterium glutamicum
8
growth-acceleration-targeted evolution
8
alternative hemoprotein
8
chemostat culture
8
oxidative stress
8
development strategy
4
strategy non-gmo
4
non-gmo organism
4
increased
4
organism increased
4

Similar Publications

Metabolic Engineering of Corynebacterium glutamicum for High-Level Production of 1,5-Pentanediol, a C5 Diol Platform Chemical.

Adv Sci (Weinh)

December 2024

Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.

The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.

View Article and Find Full Text PDF

Metabolic Engineering of for Efficient Production of Ectoine.

J Agric Food Chem

January 2025

The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in .

View Article and Find Full Text PDF

Ergothioneine biosynthesis: The present state and future prospect.

Synth Syst Biotechnol

November 2024

School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China.

Ergothioneine (ERG), a rare natural thio-histidine derivative with potent antioxidant properties and diverse biological functions, is widely utilized in food processing, cosmetics, pharmaceuticals, and nutritional supplements. Current bioproduction methods for ERG primarily depend on fermenting edible mushrooms. However, with the advancement in synthetic biology, an increasing number of genetically engineered microbial hosts have been developed for ERG production, including , , and .

View Article and Find Full Text PDF

Continuous Evolution of Protein through T7 RNA Polymerase-Guided Base Editing in .

ACS Synth Biol

December 2024

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

targeted mutagenesis technologies are the basis for the continuous directed evolution of specific proteins. Here, an efficient mutagenesis system (CgMutaT7) for continuous evolution of the targeted gene in was developed. First, cytosine deaminase and uracil-DNA glycosylase inhibitor were sequentially fused to T7 RNA polymerase using flexible linkers to build the CgMutaT7 system, which introduces mutations in targeted regions controlled by the T7 promoter.

View Article and Find Full Text PDF

exhibits intrinsic resistance to most antibiotics, hence leading to infections that are difficult to treat. To address this issue, the identification of new molecular targets is essential for the development or repositioning of therapeutic agents. This study demonstrated that the -knockout strain, Mab, became significantly susceptible to a range of antibiotics, not only but also exhibited susceptibility to rifabutin, bedaquiline, and linezolid .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!