Background: The current study mainly focused on provide further insights into the association of the miR-22-3p and miR-29c-3p expression in CFU-Hill colonies with birth weight and senescence process in children.

Methods: This cross-sectional study evaluated 61 children (32 boys, 29 girls). The CFU-Hill colonies number was evaluated in vitro by cell culture technique and senescence was detected by β-galactosidase (SA-β-Gal) assay. Expression of miR-22-3p and miR-29c-3p isolated from CFU-Hill colonies were detected using quantitative real-time polymerase chain reaction.

Results: Birth weight was correlated with both CFU-Hill colonies and %SA-β-Gal positive staining. Multivariate linear regression analysis revealed that the senescence was a predictor of the lower CFU-Hill colonies number, while only the birth weight was a predictor of senescence of CFU-Hill colonies. Overexpression of miR-22-3p and miR-29c-3p was observed in CFU-Hill colonies isolated from children with low birth weight (LBW). Interestingly, we found a significant correlation between %SA-β-Gal cells staining positive for both miR-22-3p and miR-29c-3p.

Conclusion: The LBW is associated with decreased CFU-Hill colonies number and high senescence of these cells. The overexpression of miR-22-3p and miR-29c-3p may be partially responsible for this alteration due to regulation of several pathways related to the senescence process.

Impact: The study establishes a significant correlation between birth weight and the number of CFU-Hill colonies, suggesting that birth weight could be a predictive biomarker for vascular health in children. Data indicates that cellular senescence is a predictor of reduced CFU-Hill colony numbers. This suggests that the aging process of these cells could be an important factor in understanding the vascular health issues in children with low birth weight. The overexpression of miR-22-3p and miR-29c-3p in children with low birth weight and their correlation with increased cellular senescence highlight these microRNAs as possible molecular mechanisms influencing the aging of CFU-Hill colonies.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41390-024-03128-0DOI Listing

Publication Analysis

Top Keywords

cfu-hill colonies
44
birth weight
36
mir-22-3p mir-29c-3p
24
overexpression mir-22-3p
16
children low
16
low birth
16
cfu-hill
12
colonies number
12
colonies
11
senescence
9

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!