Optically pumped magnetometers (OPMs) offer a new wearable means to measure magnetoencephalography (MEG) signals, with many advantages compared to conventional systems. However, OPMs are an emerging technology, thus characterizing and replicating MEG recordings is essential. Using OPM-MEG and SQUID-MEG, this study investigated evoked responses, oscillatory power, and functional connectivity during emotion processing in 20 adults, to establish replicability across the two technologies. Five participants with dental fixtures were included to assess the validity of OPM-MEG recordings in those with irremovable metal. Replicable task-related evoked responses were observed in both modalities. Similar patterns of oscillatory power to faces were observed in both systems. Increased connectivity was found in SQUID-versus OPM-MEG in an occipital and parietal anchored network. Notably, high quality OPM-MEG data were retained in participants with metallic fixtures, from whom no useable data were collected using conventional MEG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948796PMC
http://dx.doi.org/10.1038/s41598-024-56878-6DOI Listing

Publication Analysis

Top Keywords

evoked responses
8
oscillatory power
8
optically pumped
4
pumped magnetometers
4
magnetometers replicate
4
replicate task-related
4
task-related responses
4
responses generation
4
generation magnetoencephalography
4
magnetoencephalography optically pumped
4

Similar Publications

Injectable biomaterials, such as thermosensitive chitosan (CH)-based hydrogels, present a highly translational potential in dentistry due to their minimally invasive application, adaptability to irregular defects/shapes, and ability to carry therapeutic drugs. This work explores the incorporation of azithromycin (AZI) into thermosensitive CH hydrogels for use as an intracanal medication in regenerative endodontic procedures (REPs). The morphological and chemical characteristics of the hydrogel were assessed by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR).

View Article and Find Full Text PDF

Objectives: The acoustic change complex (ACC) is a cortical auditory evoked potential that shows promise as an objective test of the neural capacity for speech and sound discrimination, particularly for difficult-to-test populations, for example, cognitively impaired adults. There is uncertainty, however, surrounding the performance of the ACC with behavioral measures. The objective of this study was to systematically review the literature, focusing on adult studies, to investigate the relationship between ACC responses and behavioral psychophysical measures.

View Article and Find Full Text PDF

Historically, electrophysiological correlates of scene processing have been studied with experiments using static stimuli presented for discrete timescales where participants maintain a fixed eye position. Gaps remain in generalizing these findings to real-world conditions where eye movements are made to select new visual information and where the environment remains stable but changes with our position and orientation in space, driving dynamic visual stimulation. Co-recording of eye movements and electroencephalography (EEG) is an approach to leverage fixations as time-locking events in the EEG recording under free-viewing conditions to create fixation-related potentials (FRPs), providing a neural snapshot in which to study visual processing under naturalistic conditions.

View Article and Find Full Text PDF

Audiovisual associative memory and audiovisual integration involve common behavioral processing components and significantly overlap in their neural mechanisms. This suggests that training on audiovisual associative memory may have the potential to improve audiovisual integration. The current study tested this hypothesis by applying a 2 (group: audiovisual training group, unimodal control group) * 2 (time: pretest, posttest) design.

View Article and Find Full Text PDF

The antioxidant property of CAPE depends on TRPV1 channel activation in microvascular endothelial cells.

Redox Biol

January 2025

Laboratory for Research in Functional Nutrition, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Av. El Líbano 5524, Macul, Santiago, 7830490, Chile. Electronic address:

Caffeic acid phenethyl ester (CAPE) is a hydrophobic phytochemical typically found in propolis that acts as an antioxidant, anti-inflammatory and cardiovascular protector, among several other properties. However, the molecular entity responsible for recognising CAPE is unknown, and whether that molecular interaction is involved in developing an antioxidant response in the target cells remains an unanswered question. Herein, we hypothesized that a subfamily of TRP ion channels works as the molecular entity that recognizes CAPE at the plasma membrane and allows a fast shift in the antioxidant capacity of intact endothelial cells (EC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!