Background: Laser-induced breakdown spectroscopy (LIBS) is a well-recognized analytical technique used for elemental analysis. This method is gaining considerable attention also in biological applications thanks to its ability for spatial mapping and elemental imaging. The implementation of LIBS in the biomedical field is based on the detection of metals or other elements that either naturally occur in the samples or are present artificially. The artificial implementation of nanoparticle labels (Tag-LIBS) enables the use of LIBS as a readout technique for immunochemical assays. However, one of the biggest challenges for LIBS to meet immunoassay readout standards is its sensitivity.

Results: This paper focuses on the improvement of LIBS sensitivity for the readout of nanoparticle-based immunoassays. First, the LIBS setup was optimized on photon-upconversion nanoparticle (UCNP) droplets deposited on the microtiter plate wells. Two collection optics systems were compared, with single pulse (SP) and collinear double pulse (DP) LIBS arrangements. By deploying the second laser pulse, the sensitivity was improved up to 30 times. The optimized SP and DP setups were then employed for the indirect detection of human serum albumin based on immunoassay with UCNP-based labels. Compared to our previous LIBS study, the detection limit was enhanced by two orders of magnitude, from 10 ng mL to 0.29 ng mL. In addition, two other immunochemical methods were used for reference, based on the readout of upconversion luminescence of UCNPs and absorbance measurement with enzyme labels. Finally, the selectivity of the assay was tested and the practical potential of Tag-LIBS was demonstrated by the successful analysis of urine samples.

Significance And Novelty: In this work, we improved the sensitivity of the Tag-LIBS method by combining new labels based on UCNPs with the improved collection optics and collinear DP configuration. In the instrumental setup optimization, the DP LIBS showed better sensitivity and signal-to-noise ratio than SP. The optimizations allowed the LIBS readout to surpass the sensitivity of enzyme immunoassay, approaching the qualities of upconversion luminescence readout, which is nowadays a state-of-the-art readout technique.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342418DOI Listing

Publication Analysis

Top Keywords

libs
10
double pulse
8
laser-induced breakdown
8
breakdown spectroscopy
8
libs readout
8
readout technique
8
collection optics
8
upconversion luminescence
8
readout
7
sensitivity
5

Similar Publications

Commercial SiO Encapsulated in Hybrid Bilayer Conductive Skeleton as Stable Anode Coupling Chemical Prelithiation for Lithium-Ion Batteries.

Small

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.

Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.

View Article and Find Full Text PDF

Combination of plasma acoustic emission signal and laser-induced breakdown spectroscopy for accurate classification of steel.

Anal Chim Acta

January 2025

Key Laboratory of High Performance Manufacturing for Aero Engine (MIIT), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China. Electronic address:

Background: Fast and accurate classification of steel can effectively improve industrial production efficiency. In recent years, the use of laser-induced breakdown spectroscopy (LIBS) in conjunction with other techniques for material classification has been developing. Plasma Acoustic Emission Signal (PAES) is a type of modal information separate from spectra that is detected using LIBS, and it can reflect some of the sample's physicochemical information.

View Article and Find Full Text PDF

Currently, lithium-ion batteries (LIBs) are at the forefront of energy storage technologies. Silicon-based anodes, with their high capacity and low cost, present a promising alternative to traditional graphite anodes in LIBs, offering the potential for substantial improvements in energy density. However, the significant volumetric changes that silicon-based anodes undergo during charge and discharge cycles can lead to structural degradation.

View Article and Find Full Text PDF

Nanocellulose-reinforced nanofiber composite poly(aryl ether ketone) polymer electrolyte for advanced lithium batteries.

Int J Biol Macromol

January 2025

Faculty of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun 130024, PR China; College of Chemical Engineering, Changchun University of Technology, 2055 Yanan Street, Changchun 130024, PR China. Electronic address:

Solid polymer batteries (SPEs) are highly desirable for energy storage because of the urgent need for higher energy density and safer lithium ion batteries (LIBs). In this work, the single-ion lithium salt PAEK-LiCPSI was synthesized by grafting 3-chloropropanesulfonyl trifluoromethanesulimide lithium (LiCPSI) onto poly(aryl ether ketone) (PAEK). Nanocellulose (NCC), PAEK-LiCPSI, and poly(vinylidene fluoride) (PVDF-HFP) were compounded to obtain NCC reinforced high-performance nanofiber composite polymer electrolytes (NCC/PAEK/PVDF) through electrospinning, which presented tensile strength of 15.

View Article and Find Full Text PDF

The assessment of soil contamination by heavy metals is of high importance due to its impact on the environment and human health. Standard high-sensitivity spectroscopic techniques for this task such as atomic absorption spectrometry (AAS) and inductively coupled plasma spectrometry (ICP-OES and ICP-MS) are effective but time-consuming and costly, mainly due to sample preparation and lab consumables, respectively. In the present study, a laser-based spectroscopic approach is proposed, laser-induced breakdown spectroscopy (LIBS), which, combined with machine learning (ML), can provide a tool for rapid assessment of soil contamination by heavy metals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!