Light in a Heartbeat: Bond Scission by a Single Photon above 800 nm.

J Am Chem Soc

Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, Zurich CH-8057, Switzerland.

Published: March 2024

Photocages enable scientists to take full control over the activity of molecules using light as a biocompatible stimulus. Their emerging applications in photoactivated therapies call for efficient uncaging in the near-infrared (NIR) window, which represents a fundamental challenge. Here, we report synthetically accessible cyanine photocages that liberate alcohol, phenol, amine, and thiol payloads upon irradiation with NIR light up to 820 nm in aqueous media. The photocages display a unique chameleon-like behavior and operate via two distinct uncaging mechanisms: photooxidation and heterolytic bond cleavage. The latter process constitutes the first example of a direct bond scission by a single photon ever observed in cyanine dyes or at wavelengths exceeding 800 nm. Modulation of the beating rates of human cardiomyocytes that we achieved by light-actuated release of adrenergic agonist etilefrine at submicromolar concentrations and low NIR light doses (∼12 J cm) highlights the potential of these photocages in biology and medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979397PMC
http://dx.doi.org/10.1021/jacs.3c14197DOI Listing

Publication Analysis

Top Keywords

bond scission
8
scission single
8
single photon
8
nir light
8
light
4
light heartbeat
4
heartbeat bond
4
photon 800
4
photocages
4
800 photocages
4

Similar Publications

Context: This study meticulously examines the criteria for assigning electron rearrangements along the intrinsic reaction coordinate (IRC) leading to bond formation and breaking processes during the pyrolytic isomerization of cubane (CUB) to 1,3,5,7-cyclooctatetraene (COT) from both thermochemical and bonding perspectives. Notably, no cusp-type function was detected in the initial thermal conversion step of CUB to bicyclo[4.2.

View Article and Find Full Text PDF

The selective reaction of cyclic aminoperoxides with FeCl proceeds through a sequence of O-O and C-C bond cleavages, followed by intramolecular cyclization, yielding functionalized tetrahydrofurans in 44-82% yields. Replacing the peroxyacetal group in the peroxide structure with a peroxyaminal fragment fundamentally alters the reaction pathway. Instead of producing linear functionalized ketones, this modification leads to the formation of hard-to-access substituted tetrahydrofurans.

View Article and Find Full Text PDF

Photoswitchable Topological Regulation of Covalent Macrocycles, Molecular Recognition, and Interlocked Structures.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.

View Article and Find Full Text PDF

Sulfated zirconium oxide (SZO) catalyzes the hydrogenolysis of isotactic polypropylene (iPP, M=13.3 kDa, Đ=2.4, =94 %) or high-density polyethylene (HDPE, M=2.

View Article and Find Full Text PDF

Competing Photocleavage on Boron and at the -Position in BODIPY Photocages.

J Org Chem

January 2025

Department of Organic Chemistry and Biochemistry, Rud̵er Bošković Institute, Bijenička Cesta 54, Zagreb 10 000, Croatia.

BODIPY photocages (photocleavable protective groups) have stirred interest because they can release biologically active cargo upon visible light excitation. We conducted combined theoretical and experimental investigations on selected BODIPY photocages to elucidate the mechanism of the competing photocleavage at the boron and -position. Based on the computations, the former reaction involves elongation of the B-C bond, yielding a tight borenium cation and methyl anion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!