Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deterioration in mechanical performances and aging resistance due to the introduction of flame retardants is a major obstacle for bio-based fire-safety polypropylene (PP). Herein, we reported a kind of functionalized lignin nanoparticles assembled with MXene (MX@LNP), and applied it to construct the flame-retardant PP composites (PP-MA) with superior fire safety, excellent mechanical performance, electromagnetic shielding effects and aging resistance. Specifically, the PP-MA doped with only 18 wt% flame-retardant additives (PP-MA18) achieved the UL-94 V-0 rating. In comparison to pure PP, PP-MA18 presented a greatly decreased peak of heat release rate (pHRR), total heat rate (THR), and peak smoke production rate (pSPR) by 79.7 %, 69.0 % and 75.8 %, respectively, and satisfactory decrease in total flammable and toxic volatiles evolved. The formed fine solid microstructure of carbon residuals effectively promoted the compactness of char layers. More importantly, the nano-effect and the strong interface interaction between the complexed MX@LNP and PP enhanced the tensile strength (45.78 MPa) and elongation at break (725.95 %) of PP-MA. Additionally, the significant ultraviolet absorption and electromagnetic wave dissipation performance of MXene and lignin enabled excellent aging resistance and electromagnetic shielding effects of PP-MA compared with PP. This achieved MX@LNP afforded a novel approach for developing flame retardant materials with excellent application performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130957 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!