In this work, we explore a nickel-catalyzed reversible carbon-sulfur (C-S) bond activation strategy to achieve selective sulfur isotope exchange. Isotopes are at the foundation of applications in life science, such as nuclear imaging, and are essential tools for the determination of pharmacokinetic and dynamic profiles of new pharmaceuticals. However, the insertion of an isotope into an organic molecule remains challenging, and current technologies are element-specific. Despite the ubiquitous presence of sulfur in many biologically active molecules, sulfur isotope labeling is an underexplored field, and sulfur isotope exchange has been overlooked. This approach enables us to move beyond standardized element-specific procedures and was applied to multiple isotopes, including deuterium, carbon-13, sulfur-34, and radioactive carbon-14. These results provide a unique platform for multiple isotope labeling and are compatible with a wide range of substrates, including pharmaceuticals. In addition, this technology proved its potential as an isotopic encryption device for organic molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.3c14106 | DOI Listing |
Chemistry
December 2024
Università Ca' FOscari di Venezia, Scienze Molecolari e Nanosistemi, via Torino 155, MESTRE, 30172, MESTRE, ITALY.
The supramolecular resorcinarene hexameric capsule efficiently promotes the unprecedented reaction between isocyanides and electron-deficient aromatic aldehydes leading to the formation of imines and carbon monoxide. The mechanism of the reaction was investigated via isotope labelling, kinetic analysis of the reaction, computational studies and the independent synthesis of a proposed intermediate. Control experiments indicate that the formation of the key aziridinone intermediate is limited to the cavity of the capsule.
View Article and Find Full Text PDFUnlabelled: Diet has strong impacts on the composition and function of the gut microbiota with implications for host health. Therefore, it is critical to identify the dietary components that support growth of specific microorganisms . We used protein-based stable isotope fingerprinting (Protein-SIF) to link microbial species in gut microbiota to their carbon sources by measuring each microbe's natural C content (δ C) and matching it to the C content of available substrates.
View Article and Find Full Text PDFWater Res
December 2024
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China. Electronic address:
Low temperature generally restricts biological activity, slowing down electron transfer in biogeochemical cycles and causing a series of environmental problems such as nitrogen pollution. We present a strategy to boost electron transfer in microbial cell at low temperatures via stimulation with low current. It is demonstrated by establishing a constructed wetland system coupled with solar powered microbial electrolysis cell, which enhances microbial activity through external micro currents (18.
View Article and Find Full Text PDFStem Cell Res Ther
December 2024
Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 33 Ying Feng Road, Guangzhou, 510120, China.
Background: Cancer stem cells (CSCs) have unique metabolic characteristics and are hypothesized to contribute significantly to the recurrence and drug resistance of glioblastoma multiforme (GBM). However, the reliance on mitochondrial metabolism and the underlying mechanism of glioblastoma stem cells (GSCs) remains to be elucidated.
Methods: To quantify differential mitochondrial protein expression between GSCs and differentiated cells, a mass spectrum screen was applied by the Stable Isotope Labeling with Amino Acids in Cell Culture (SILAC) technique.
Neurobiol Dis
December 2024
Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America. Electronic address:
Niemann Pick Disease Type C (NP-C), a rare neurogenetic disease with no known cure, is caused by mutations in the cholesterol trafficking protein NPC1. Brain microvascular endothelial cells (BMEC) are thought to play a critical role in the pathogenesis of several neurodegenerative diseases; however, little is known about how these cells are altered in NP-C. In this study, we investigated how NPC1 inhibition perturbs BMEC metabolism in human induced pluripotent stem cell-derived BMEC (hiBMEC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!