Acupoints (APs) prove to have positive effects on disease diagnosis and treatment, while intelligent techniques for the automatic detection of APs are not yet mature, making them more dependent on manual positioning. In this paper, we realize the skin conductance-based APs and non-APs recognition with machine learning, which could assist in APs detection and localization in clinical practice. Firstly, we collect skin conductance of traditional Five-Shu Point and their corresponding non-APs with wearable sensors, establishing a dataset containing over 36000 samples of 12 different AP types. Then, electrical features are extracted from the time domain, frequency domain, and nonlinear perspective respectively, following which typical machine learning algorithms (SVM, RF, KNN, NB, and XGBoost) are demonstrated to recognize APs and non-APs. The results demonstrate XGBoost with the best precision of 66.38%. Moreover, we also quantify the impacts of the differences among AP types and individuals, and propose a pairwise feature generation method to weaken the impacts on recognition precision. By using generated pairwise features, the recognition precision could be improved by 7.17%. The research systematically realizes the automatic recognition of APs and non-APs, and is conducive to pushing forward the intelligent development of APs and Traditional Chinese Medicine theories.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3378211DOI Listing

Publication Analysis

Top Keywords

machine learning
12
aps non-aps
12
skin conductance-based
8
recognition machine
8
recognition precision
8
aps
7
recognition
5
conductance-based acupoint
4
acupoint non-acupoint
4
non-acupoint recognition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!