A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unlocking the Potential of Pterostilbene: A Pharmaceutical Element for Aptamer-Based Nanomedicine. | LitMetric

Unlocking the Potential of Pterostilbene: A Pharmaceutical Element for Aptamer-Based Nanomedicine.

ACS Appl Mater Interfaces

Institute of Molecular Medicine (IMM), Molecular Cell Lab for Kidney Disease, Department of Cardiology, Department of Pharmacy, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.

Published: March 2024

Natural compounds like pterostilbene (PTE) have gained recognition for their various biological activities and potential health benefits. However, challenges related to bioavailability and limited clinical efficacy have prompted efforts to strengthen their therapeutic potential. To meet these challenges, we herein rationally designed and successfully synthesized a pharmaceutical phosphoramidite that allows for the programmable incorporation of PTE into oligonucleotides. The resultant aptamer-PTE conjugate can selectively bind to cancer cells, leading to a specific internalization and drug release. Moreover, compared with free PTE, the conjugate exhibits superior cytotoxicity in cancer cells. Specifically, in a zebrafish xenograft model, the nanomedicine effectively inhibits tumor growth and neovascularization, highlighting its potential for targeted antitumor therapy. This approach presents a promising avenue for harnessing the therapeutic potential of natural compounds via a nanomedicine solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c16723DOI Listing

Publication Analysis

Top Keywords

natural compounds
8
therapeutic potential
8
cancer cells
8
unlocking potential
4
potential pterostilbene
4
pterostilbene pharmaceutical
4
pharmaceutical element
4
element aptamer-based
4
aptamer-based nanomedicine
4
nanomedicine natural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!