The condition for dynamic stability in humans walking with feedback control.

PLoS Comput Biol

Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Published: March 2024

The walking human body is mechanically unstable. Loss of stability and falling is more likely in certain groups of people, such as older adults or people with neuromotor impairments, as well as in certain situations, such as when experiencing conflicting or distracting sensory inputs. Stability during walking is often characterized biomechanically, by measures based on body dynamics and the base of support. Neural control of upright stability, on the other hand, does not factor into commonly used stability measures. Here we analyze stability of human walking accounting for both biomechanics and neural control, using a modeling approach. We define a walking system as a combination of biomechanics, using the well known inverted pendulum model, and neural control, using a proportional-derivative controller for foot placement based on the state of the center of mass at midstance. We analyze this system formally and show that for any choice of system parameters there is always one periodic orbit. We then determine when this periodic orbit is stable, i.e. how the neural control gain values have to be chosen for stable walking. Following the formal analysis, we use this model to make predictions about neural control gains and compare these predictions with the literature and existing experimental data. The model predicts that control gains should increase with decreasing cadence. This finding appears in agreement with literature showing stronger effects of visual or vestibular manipulations at different walking speeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10997112PMC
http://dx.doi.org/10.1371/journal.pcbi.1011861DOI Listing

Publication Analysis

Top Keywords

neural control
20
periodic orbit
8
control gains
8
walking
7
control
7
stability
6
neural
5
condition dynamic
4
dynamic stability
4
stability humans
4

Similar Publications

Multilayer network analysis in patients with end-stage kidney disease.

Sci Rep

December 2024

Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108, Republic of Korea.

This study aimed to investigate alterations in a multilayer network combining structural and functional layers in patients with end-stage kidney disease (ESKD) compared with healthy controls. In all, 38 ESKD patients and 43 healthy participants were prospectively enrolled. They exhibited normal brain magnetic resonance imaging (MRI) without any structural lesions.

View Article and Find Full Text PDF

Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.

View Article and Find Full Text PDF

Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy.

Nat Commun

December 2024

Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.

Peripheral neuropathy (PN), the most common complication of diabetes, leads to sensory loss and associated health issues as pain and increased fall risk. However, present treatments do not counteract sensory loss, but only partially manage its consequences. Electrical neural stimulation holds promise to restore sensations, but its efficacy and benefits in PN damaged nerves are yet unknown.

View Article and Find Full Text PDF

Neuromorphic-enabled video-activated cell sorting.

Nat Commun

December 2024

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.

Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.

View Article and Find Full Text PDF

Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices.

Adv Healthc Mater

December 2024

Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.

Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!