The citrus blackfly (CBF), Ashby, is an exotic pest native to Southeast Asia that has spread rapidly to the world's main centers of citrus production, having been recently introduced to Brazil. In this study, a maximum entropy niche model (MaxEnt) was used to predict the potential worldwide distribution of CBF under current and future climate change scenarios for 2030 and 2050. These future scenarios came from the Coupled Model Intercomparison Project Phase 6 (CMIP6), SSP1-2.6, and SSP5-8.5. The MaxEnt model predicted the potential distribution of CBF with area under receiver operator curve (AUC) values of 0.953 and 0.930 in the initial and final models, respectively. The average temperature of the coldest quarter months, precipitation of the rainiest month, isothermality, and precipitation of the driest month were the strongest predictors of CBF distribution, with contributions of 36.7%, 14.7%, 13.2%, and 10.2%, respectively. The model based on the current time conditions predicted that suitable areas for the potential occurrence of CBF, including countries such as Brazil, China, the European Union, the USA, Egypt, Turkey, and Morocco, are located in tropical and subtropical regions. Models from SSP1-2.6 (2030 and 2050) and SSP5-8.5 (2030) predicted that suitable habitats for CBF are increasing dramatically worldwide under future climate change scenarios, particularly in areas located in the southern US, southern Europe, North Africa, South China, and part of Australia. On the other hand, the SSP5-8.5 model of 2050 indicated a great retraction of the areas suitable for CBF located in the tropical region, with an emphasis on countries such as Brazil, Colombia, Venezuela, and India. In general, the CMIP6 models predicted greater risks of invasion and dissemination of CBF until 2030 and 2050 in the southern regions of the USA, European Union, and China, which are some of the world's largest orange producers. Knowledge of the current situation and future propagation paths of the pest serve as tools to improve the strategic government policies employed in CBF's regulation, commercialization, inspection, combat, and phytosanitary management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891955PMC
http://dx.doi.org/10.3390/plants13040535DOI Listing

Publication Analysis

Top Keywords

climate change
12
change scenarios
12
2030 2050
12
maxent model
8
cbf
8
distribution cbf
8
future climate
8
predicted suitable
8
countries brazil
8
european union
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!