This study aimed to assess the antimicrobial activities of plant extracts from and when used as coatings for textiles. A pulsed ultrasound-assisted extraction method (PUAE) was employed to obtain methanolic and hexanoic extracts from both plants. methanol extraction exhibited the highest yield at 22.76% (±0.61%), while demonstrated lower yields. Phytochemical screening identified various secondary metabolites in the extracts, including phenols, quinones, and steroids. Antimicrobial tests against and revealed varying degrees of susceptibility, with hexanoic extracts showing the highest activity against at an average percentage growth of 18.74% (±0.26%). Minimum inhibitory concentration (MIC) values were determined for the extracts, but complete inhibition did not occur at concentrations below 500 μg/mL. The extracts exhibited varying effects on and growth, with some extracts promoting bacterial growth. Coating textiles with methanolic extracts demonstrated antibacterial activity against with the highest zone of inhibition observed in cotton-coated samples (258.4 mm). Polyester-coated samples exhibited smaller inhibition zones, with the lowest observed in methanolic extract coating (65.97 mm). Scanning electron microscope (SEM) analysis revealed visible surface morphology changes in coated fabrics, depicting fine, cluster, lumpy, flaky, and fragment-like morphologies. Laundering effects on coated fabrics were investigated, showing a significant decrease in antimicrobial activity after washing. Fourier-transform infrared spectroscopy (FTIR) identified functional groups in the extracts associated with antimicrobial properties. The complexity of the bioactive compounds suggests potential antimicrobial efficacy, resting on factors such as geographical location, climate, and extraction methods. Notwithstanding the limitations, this study contributes valuable insights into the use of plant extracts as antimicrobial coatings for textiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10893333 | PMC |
http://dx.doi.org/10.3390/plants13040514 | DOI Listing |
PLoS One
January 2025
Intensive Care Unit, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China.
Background: Shenfu injection (SFI), derived from a traditional Chinese medicine (TCM) prescription, is an effective drug for the treatment of sepsis-induced myocardial injury (SIMI) with good efficacy, but its exact therapeutic mechanism remains unclear.
Methods: SwissTargetPrediction and GeneCards database were used to obtain relevant targets for SFI and SIMI. STRING 11.
Chem Biodivers
January 2025
University of Lille: Universite de Lille, UMR BioEcoAgro, 3 rue du Professeur Laguesse, 59800, LILLE, FRANCE.
Parasitic diseases such as trypanosomiasis and leishmaniasis pose significant health challenges in Africa. The Senegalese Pharmacopoeia, known for its many medicinal plants with anti-infectious properties, can be a source of antiparasitic natural products. This study aimed to evaluate the in vitro antiparasitic activities of 33 methanolic extracts from 24 ethnopharmacologically selected plants against Trypanosoma brucei brucei and Leishmania mexicana mexicana, as well as their cytotoxic activities on WI-38 cells.
View Article and Find Full Text PDFF1000Res
January 2025
Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
Historically, plant derived natural products and their crude extracts have been used to treat a wide range of ailments across the world. Biogerontology research aims to explore the molecular basis of aging and discover new anti-aging therapeutic compounds or formulations to combat the detrimental effects of aging and promote a healthy life span. The budding yeast has been, and continues to be, an indispensable model organism in the field of biomedical research for discovering the molecular basis of aging has preserved nutritional signaling pathways (such as the target of rapamycin (TOR)-Sch9 and the Ras-AC-PKA (cAMP-dependent protein kinase) pathways, and shows two distinct aging paradigms chronological life span (CLS) and replicative life span (RLS).
View Article and Find Full Text PDFScientificWorldJournal
January 2025
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sana'a University, Sana'a, Yemen.
Ethnomedicine exhibits potential in developing affordable effective antidiabetic agents. This work aimed to explore the antidiabetic properties of latex extract both in vivo, utilizing alloxan-induced diabetic rats, and in vitro, through -amylase enzyme testing. Additionally, it sought to formulate optimal effervescent granules derived from the extract.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
Background: Dietary supplementation for beef cattle, using natural plant extracts, such as oregano essential oil (OEO), has proven effective in enhancing growth performance, beef production quantity and quality, and ensuring food safety. However, the precise mechanisms underlying these effects remain unclear. This study investigated the impact of OEO on carcass traits, muscle fiber structure, meat quality, oxidative status, flavor compounds, and gene regulatory mechanisms in the longissimus thoracis (LT) muscles of beef cattle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!