Characterization of the ADP-β-D-manno-heptose biosynthetic enzymes from two pathogenic Vibrio strains.

Appl Microbiol Biotechnol

State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

Published: March 2024

ADP-activated β-D-manno-heptoses (ADP-β-D-manno-heptoses) are precursors for the biosynthesis of the inner core of lipopolysaccharide in Gram-negative bacteria. Recently, ADP-D-glycero-β-D-manno-heptose (ADP-D,D-manno-heptose) and its C-6'' epimer, ADP-L-glycero-β-D-manno-heptose (ADP-L,D-manno-heptose), were identified as potent pathogen-associated molecular patterns (PAMPs) that can trigger robust innate immune responses. Although the production of ADP-D,D-manno-heptose has been studied in several different pathogenic Gram-negative bacteria, current knowledge of ADP-β-D-manno-heptose biosynthesis in Vibrio strains remains limited. Here, we characterized the biosynthetic enzymes of ADP-D,D-manno-heptose and the epimerase that converts it to ADP-L,D-manno-heptose from Vibrio cholerae (the causative agent of pandemic cholera) and Vibrio parahaemolyticus (non-cholera pathogen causing vibriosis with clinical manifestations of gastroenteritis and wound infections) in comparison with their isozymes from Escherichia coli. Moreover, we discovered that β-D-mannose 1-phosphate, but not α-D-mannose 1-phosphate, could be activated to its ADP form by the nucleotidyltransferase domains of bifunctional kinase/nucleotidyltransferases HldE (from V. cholerae) and HldE (from V. parahaemolyticus). Kinetic analyses of the nucleotidyltransferase domains of HldE and HldE together with the E. coli-derived HldE were thus carried out using β-D-mannose 1-phosphate as a mimic sugar substrate. Overall, our works suggest that V. cholerae and V. parahaemolyticus are capable of synthesizing ADP-β-D-manno-heptoses and lay a foundation for further physiological function explorations on manno-heptose metabolism in Vibrio strains. KEY POINTS: • Vibrio strains adopt the same biosynthetic pathway as E. coli in synthesizing ADP-β-D-manno-heptoses. • HldEs from two Vibrio strains and E. coli could activate β-D-mannose 1-phosphate to ADP-β-D-mannose. • Comparable nucleotidyltransfer efficiencies were observed in the kinetic studies of HldEs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10948575PMC
http://dx.doi.org/10.1007/s00253-024-13108-3DOI Listing

Publication Analysis

Top Keywords

vibrio strains
20
β-d-mannose 1-phosphate
12
biosynthetic enzymes
8
gram-negative bacteria
8
nucleotidyltransferase domains
8
synthesizing adp-β-d-manno-heptoses
8
vibrio
7
strains
5
hlde
5
characterization adp-β-d-manno-heptose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!