The Mediterranean diet (MD), characterized by olive oil, olives, fruits, vegetables, and wine intake, is associated with a reduced risk of dementia. These foods are rich in bioactives with neuroprotective and antioxidant properties, including hydroxytyrosol (HT), tyrosol (TYRS), serotonin (SER) and protocatechuic acid (PCA), a phenolic acid metabolite of anthocyanins. It remains to be established if these molecules cross the blood-brain barrier (BBB), a complex interface that strictly controls the entrance of molecules into the brain. We aimed to assess the ability of tyrosine (TYR), HT, TYRS, PCA and SER to pass through the BBB without disrupting its properties. Using Human Brain Microvascular Endothelial Cells as an model of the BBB, we assessed its integrity by transendothelial electrical resistance, paracellular permeability and immunocytochemical assays of the adherens junction protein β-catenin. The transport across the BBB was evaluated by ultra-high-performance liquid chromatography high resolution mass spectrometry. Results show that tested bioactives did not impair BBB integrity regardless of the concentration evaluated. Additionally, all of them cross the BBB, with the following percentages: HT (∼70%), TYR (∼50%), TYRS (∼30%), SER (∼30%) and PCA (∼9%). These results provide a basis for the MD neuroprotective role.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3fo04760a | DOI Listing |
J Adv Res
January 2025
Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.
J Biophotonics
January 2025
Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.
Diabetes mellitus (DM), a chronic metabolic disorder that adversely affects the blood-brain barrier (BBB) and microglial function in the central nervous system (CNS), contributing to neuronal damage and neurodegenerative diseases. However, the underlying molecular mechanisms linking diabetes to BBB dysfunction and microglial dysregulation remain poorly understood. Here, we assessed the impacts of diabetes on BBB and microglial reactivity and investigated its mechanisms.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Pharmacology of Chinese Materia Medica, Institution of Chinese Integrative Medicine, Hebei Medical University, Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, Hebei Province 050017, China.
Ethnopharmacological Relevance: Cepharanthine (CEP) is an alkaloid extracted from Stephania cephalantha Hayata, a traditional Chinese medicine (TCM) renowned for its heatclearing and dehumidifying properties. For centuries, Stephania cephalantha Hayata has been employed in the treatment of a wide range of diseases, including pain, edema, inflammation, and fever.
Aim Of The Study: Our research aims to investigate the role and mechanism of Cepharanthine in ameliorating uric acid (UA) induced neuroinflammatory responses.
Acta Biomater
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:
Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Xicheng District, Beijing, China.
Alzheimer's disease (AD) is a degenerative disease characterized by progressive cognitive dysfunction. The strong link between nutrition and the occurrence and progression of AD pathology has been well documented. Poor nutritional status accelerates AD progress by potentially aggravating amyloid beta (Aβ) and tau deposition, exacerbating oxidative stress response, modulating the microbiota-gut-brain axis, and disrupting blood-brain barrier function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!