Improving the hydroxide conductivity and dimensional stability of anion exchange membranes (AEMs) while retaining their high alkaline stability is necessary to realize the commercialization of AEM water electrolysis (AEMWE). A strategy for improving the hydroxide conductivity and dimensional stability of AEMs by inserting fluorine atoms in the core structure of the backbone is reported, which not only reduces the glass transition temperature of the polymer due to steric strain, but also induces distinct phase separation by inducing polarity discrimination to facilitate the formation of ion transport channels. The resulting PFPFTP-QA AEM with fluorine into the core structure shows high hydroxide conductivity (>159 mS cm at 80 °C), favorable dimensional stability (>25% at 80 °C), and excellent alkaline stability for 1000 h in 2 m KOH solution at 80 °C. Moreover, the PFPFTP-QA is used to construct an AEMWE cell with a platinum group metal (PGM)-free NiFe anode, which exhibits the current density of 6.86 A cm at 1.9 V at 80 °C, the highest performance in Pt/C cathode and PGM-free anode reports so far and operates stably for over 100 h at a constant current of 0.5 A cm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202400031DOI Listing

Publication Analysis

Top Keywords

hydroxide conductivity
16
dimensional stability
12
anion exchange
8
high hydroxide
8
water electrolysis
8
improving hydroxide
8
conductivity dimensional
8
alkaline stability
8
core structure
8
stability
6

Similar Publications

In silico drug repurposing at the cytoplasmic surface of human aquaporin 1.

PLoS One

January 2025

Genome and Structural Bioinformatics Group, Faculty of Medicine, Health and Life Science, Swansea University, Swansea, Wales, United Kingdom.

Aquaporin 1 (AQP1) is a key channel for water transport in peritoneal dialysis. Inhibition of AQP1 could therefore impair water transport during peritoneal dialysis. It is not known whether inhibition of AQP1 occurs unintentionally due to off-target interactions of administered medications.

View Article and Find Full Text PDF

The Effects of Morphology and Hydration on Anion Transport in Self-Assembled Nanoporous Membranes.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

Ordered nanoporous polymer membranes offer opportunities for systematically probing the mechanisms of ion transport under confinement and for realizing useful materials for electrochemical devices. Here, we examine the impact of morphology and ion hydration on the transport of hydroxide and bromide anions in nanostructured polymer membranes with 1 nm scale pores. We use aqueous lyotropic self-assembly of an amphiphilic monomer, with a polymerizable surfactant to create direct hexagonal (H) and gyroid mesophases.

View Article and Find Full Text PDF

Objectives: To compare the plaque reducing efficacy of oil pulling with sesame oil compared to distilled water in a randomized, controlled, examiner-blinded parallel group study.

Materials And Methods: Forty probands without advanced periodontal disease of the University Hospital for Restorative Dentistry and Periodontology, Medical University of Innsbruck (Austria) were randomized allocated to test- (sesame oil) or control group (distilled water) and asked to pull daily in the morning for eight weeks with their allotted fluid for 15 min. Rustogi Modified Navy Plaque Index (RMNPI) and gingival bleeding index were assessed at baseline and after four and eight weeks.

View Article and Find Full Text PDF

Interfacial Water Regulation for Nitrate Electroreduction to Ammonia at Ultralow Overpotentials.

Adv Mater

January 2025

State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.

Nitrate electroreduction is promising for achieving effluent waste-water treatment and ammonia production with respect to the global nitrogen balance. However, due to the impeded hydrogenation process, high overpotentials need to be surmounted during nitrate electroreduction, causing intensive energy consumption. Herein, a hydroxide regulation strategy is developed to optimize the interfacial HO behavior for accelerating the hydrogenation conversion of nitrate to ammonia at ultralow overpotentials.

View Article and Find Full Text PDF

The dried capitulum of chrysanthemums is a traditional material in scented tea, and the kill-green process is a critical step in determining their quality. However, the changes in the physicochemical properties during kill-green and the mechanisms by which these changes affect drying characteristics, metabolic components, and aroma profiles remain unclear. Therefore, this study investigated the changes in water status, polyphenol oxidase and peroxidase activities, and microstructure during high-humidity air impingement kill-green (HHAIK) and steam kill-green (SK), and their effects on drying behavior, color, phytochemicals, and volatile profile of dried chrysanthemums.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!