Characteristics and Neural Mechanisms of Sleep-Wake Disturbances After Traumatic Brain Injury.

J Neurotrauma

Department of Neurosurgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, PR China.

Published: August 2024

Sleepwake disturbances (SWDs) are one of the most common complaints following traumatic brain injury (TBI). The high prevalence and socioeconomic burden of SWDs post-TBI have only been recognized in the past decade. Common SWDs induced by TBI include excessive daytime sleepiness (EDS), hypersomnia, insomnia, obstructive sleep apnea (OSA), and circadian rhythm sleep disorders. Sleep disturbances can significantly compromise quality of life, strain interpersonal relationships, diminish work productivity, exacerbate other clinical conditions, and impede the rehabilitation process of TBI patients. Consequently, the prompt regulation and enhancement of sleep homeostasis in TBI patients is of paramount importance. Although studies have shown that abnormal neural network function, neuroendocrine changes, disturbance of sleepwake regulators, and immune inflammatory responses related to brain structural damage induced by TBI are involved in the development of SWDs, the exact neuropathological mechanisms are still poorly understood. Therefore, we systematically review the current clinical and experimental studies on the characteristics and possible neural mechanisms of post-TBI SWDs. Elucidating the neural underpinnings of post-TBI SWDs holds the potential to diversify and enhance therapeutic approaches for these conditions. Such advancements could hasten the recuperation of TBI patients and ameliorate their overall quality of life. It is our aspiration that departments specializing in neurosurgery, rehabilitation, and neuropsychiatry will be able to recognize and address these conditions promptly, thereby facilitating the healing journey of affected individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1089/neu.2023.0647DOI Listing

Publication Analysis

Top Keywords

tbi patients
12
characteristics neural
8
neural mechanisms
8
traumatic brain
8
brain injury
8
induced tbi
8
quality life
8
post-tbi swds
8
swds
6
tbi
6

Similar Publications

Exploring the Research Focus of RNA-Binding Proteins in Trauma and Burns.

Anal Cell Pathol (Amst)

January 2025

Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, People's Republic of China, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, No. 168 Changhai Road, Shanghai 200433, China.

Trauma and burns are leading causes of death and significant global health concerns. RNA-binding proteins (RBPs) play a crucial role in post-transcriptional gene regulation, influencing various biological processes of cellular RNAs. This study aims to review the emerging trends and key areas of research on RBPs in the context of trauma and burns.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of mortality and disability worldwide and can lead to secondary sequelae such as increased seizure susceptibility. Emerging work suggests that the thalamus, the relay center of the brain that undergoes secondary damage after cortical TBI, is involved with heightened seizure risks after TBI. TBI also induces the recruitment of peripheral immune cells, including T cells, to the site(s) of injury, but it is unclear how these cells impact neurological sequelae post-TBI.

View Article and Find Full Text PDF

In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO), arterial oxygen saturation (SaO), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia.

View Article and Find Full Text PDF

Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury.

Immunopharmacol Immunotoxicol

January 2025

Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI.

View Article and Find Full Text PDF

Background: Multiple factors have been described to influence the risk of acute or chronic graft-versus-host disease (aGVHD or cGVHD) after allogeneic hematopoietic cell transplantation (HCT), including underlying chronic myeloid leukemia (CML) and high-dose total body irradiation (TBI). However, the impact of the underlying disease or low-dose TBI on the risk of GVHD in the modern era has not been determined.

Objective: To determine risk factors for GVHD in the modern era in the setting of antithymocyte globulin (ATG)-based GVHD prophylaxis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!