The ear is the organ most susceptible to explosion overpressure, and cochlear injuries frequently occur after blast exposure. Blast exposure can lead to sensorineural hearing loss (SNHL), which is an irreversible hearing loss that negatively affects the quality of life. Detailed blast-induced cochlear pathologies, such as the loss of hair cells, spiral ganglion neurons, cochlear synapses, and disruption of stereocilia, have been previously documented. However, determining cochlear sensorineural deterioration after a blast injury is challenging because animals exposed to blast overpressure usually experience tympanic membrane perforation (TMP), which causes concurrent conductive hearing loss. To evaluate pure sensorineural cochlear dysfunction, we developed an experimental animal model of blast-induced cochlear injury using a laser-induced shock wave. This method avoids TMP and concomitant systemic injuries and reproduces the functional decline in the SNHL component in an energy-dependent manner after LISW exposure. This animal model could be a platform for elucidating the pathological mechanisms and exploring potential treatments for blast-induced cochlear dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/66396 | DOI Listing |
Ann Biomed Eng
December 2024
School of Biomedical Engineering, University of Oklahoma, Norman, OK, 73019, USA.
Sci Rep
July 2024
Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL.
View Article and Find Full Text PDFJ Vis Exp
March 2024
Division of Bioinformation and Therapeutic Systems, National Defense Medical College.
The ear is the organ most susceptible to explosion overpressure, and cochlear injuries frequently occur after blast exposure. Blast exposure can lead to sensorineural hearing loss (SNHL), which is an irreversible hearing loss that negatively affects the quality of life. Detailed blast-induced cochlear pathologies, such as the loss of hair cells, spiral ganglion neurons, cochlear synapses, and disruption of stereocilia, have been previously documented.
View Article and Find Full Text PDFJ Neurotrauma
February 2024
Department of Otolaryngology, Head, and Neck Surgery, National Defense Medical College, Saitama, Japan.
Blast exposure causes serious complications, the most common of which are ear-related symptoms such as hearing loss and tinnitus. The blast shock waves can cause neurodegeneration of the auditory pathway in the brainstem, as well as the cochlea, which is the primary receptor for hearing, leading to blast-induced tinnitus. However, it is still unclear which lesion is more dominant in triggering tinnitus, the peripheral cochlea or the brainstem lesion owing to the complex pathophysiology and the difficulty in objectively measuring tinnitus.
View Article and Find Full Text PDFMedicina (Kaunas)
September 2023
Center for Injury Biomechanics, Materials and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, 111 Lock Street, Newark, NJ 07102, USA.
: Epidemiological data indicate that blast exposure is the most common morbidity responsible for mild TBI among Service Members (SMs) during recent military operations. Blast-induced tinnitus is a comorbidity frequently reported by veterans, and despite its wide prevalence, it is also one of the least understood. Tinnitus arising from blast exposure is usually associated with direct structural damage that results in a conductive and sensorineural impairment in the auditory system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!