Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe) (M=Li, Na, K & Cs) reagent revived in C(sp)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe) reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp)-C(sp) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe) reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe) reagent and also inspires them to take up this subject to even greater heights.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202400435 | DOI Listing |
Molecules
September 2023
Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende, Italy.
2-Propargyl-1,3-dicarbonyl compounds have been carbonylated under oxidative conditions and with the catalysis of the PdI/KI catalytic system to selectively afford previously unreported 2-(4-acylfuran-2-yl)acetamides in fair to good yields (54-81%) over 19 examples. The process takes place under relatively mild conditions and occurs via a mechanistic pathway involving C-H activation by oxidative monoamincarbonylation of the terminal triple bond of the substrates with formation of 2-ynamide intermediates, followed by 5---cyclization (via intramolecular conjugate addition of the in situ formed enolate to the 2-ynamide moiety) and aromative isomerization.
View Article and Find Full Text PDFChem Commun (Camb)
December 2021
Department of Chemistry, Fudan University, 2005 Songhu Rd, Shanghai, 200438, China.
Chem Rev
July 2017
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China.
J Am Chem Soc
June 2006
Department of Applied Chemistry Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603, Japan.
Highly substituted iodobenzenes were efficiently and regioselectively synthesized from readily available 1,6-diynes via two-step process consisting of silver-catalyzed Csp-H iodination and subsequent ruthenium-catalyzed [2 + 2 + 2] cycloaddition of resultant iododiynes. Some of the obtained iodobenzenes were subjected to palladium-catalyzed C-C bond-forming reactions such as Mizoroki-Heck reaction, Sonogashira reaction, and Suzuki-Miyaura coupling, giving highly conjugated molecules.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!