The solid-state reaction of the active pharmaceutical ingredient theophylline with citric acid is a well-established example of a mechanochemical reaction, leading to a model pharmaceutical cocrystal. Here, classical force field molecular dynamics was employed to investigate the molecular mixing and structural distortion that take place on the mechanically driven indentation of a citric acid nanoparticle on a slab of crystalline theophylline. Through non-equilibrium molecular dynamics simulations, a 6 nm diameter nanoparticle of citric acid was introduced onto an open (001) surface of a theophylline crystal, varying both the angle of incidence of the nanoparticle between 15° and 90° and the indentation speed between 1 m s and 16 m s. This theoretical study enabled the evaluation of how these two parameters promote molecular mixing and overall structural deformation upon the mechanical contraction of theophylline and citric acid, both of which are important parameters underlying mechanochemical cocrystallisation. The results show that the angle of incidence plays a key role in the molecular transfer ability between the two species and in the structural disruption of the initially spherical nanoparticles. Changing the indentation speed, however, did not lead to a discernible trend in molecular mixing, highlighting the importance of the incident angle in mechanochemical events in the context of supramolecular chemistry, such as the disruption of the crystal structure and molecular transfer between molecular crystals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp05475fDOI Listing

Publication Analysis

Top Keywords

molecular mixing
16
citric acid
16
molecular
9
incident angle
8
theophylline citric
8
molecular dynamics
8
mixing structural
8
angle incidence
8
indentation speed
8
molecular transfer
8

Similar Publications

The oceanic dissolved organic matter (DOM) reservoir is one of Earth's largest carbon pools, yet the factors contributing to its recalcitrance and persistence remain poorly understood. Here, we employed ultra-high resolution mass spectrometry (UHRMS) to examine the molecular dynamics of DOM from terrestrial, marine and mixed sources during bio-incubation over weekly, monthly, and one year time spans. Using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS), we classified DOM into three distinct categories (Consumed, Resistant and Product) based on their presence or absence at the start and end of the incubation.

View Article and Find Full Text PDF

Electronic coupling between individual redox units in a molecular assembly dictates their charge transfer efficacy. Being a well-defined crystalline structure, the metal-organic framework (MOF) ensures proper positioning of redox-active moieties and provides a unique platform to unveil their charge transfer dynamics and quantification with structural relationships. Here, we demonstrate a novel redox-active MOF with near-infrared through-space intervalence charge transfer by introducing a mixed valence state inside redox-active thiazolothiazole-based ligands (DPTTZ) upon photo- or electrochemical reduction.

View Article and Find Full Text PDF

Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks.

J Chem Inf Model

January 2025

Department of Chemical Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.

Accurately predicting activation energies is crucial for understanding chemical reactions and modeling complex reaction systems. However, the high computational cost of quantum chemistry methods often limits the feasibility of large-scale studies, leading to a scarcity of high-quality activation energy data. In this work, we explore and compare three innovative approaches (transfer learning, delta learning, and feature engineering) to enhance the accuracy of activation energy predictions using graph neural networks, specifically focusing on methods that incorporate low-cost, low-level computational data.

View Article and Find Full Text PDF

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.

View Article and Find Full Text PDF

Nitrogen (N) is an essential determinant of strawberry growth and productivity. However, plants exhibit varying preferences for sources of nitrogen, which ultimately affects its use efficiency. Thus, it is imperative to determine the preferred N source for the optimization of indoor strawberry production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!