A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multivariable machine learning models for clinical prediction of subsequent hip fractures in older people using the Chinese population database. | LitMetric

Purpose: This study aimed to develop and validate clinical prediction models using machine learning (ML) algorithms for reliable prediction of subsequent hip fractures in older individuals, who had previously sustained a first hip fracture, and facilitate early prevention and diagnosis, therefore effectively managing rapidly rising healthcare costs in China.

Methods: Data were obtained from Grade A Tertiary hospitals for older patients (age ≥ 60 years) diagnosed with hip fractures in southwest China between 1 January 2009 and 1 April 2020. The database was built by collecting clinical and administrative data from outpatients and inpatients nationwide. Data were randomly split into training (80%) and testing datasets (20%), followed by six ML-based prediction models using 19 variables for hip fracture patients within 2 years of the first fracture.

Results: A total of 40,237 patients with a median age of 66.0 years, who were admitted to acute-care hospitals for hip fractures, were randomly split into a training dataset (32,189 patients) and a testing dataset (8,048 patients). Our results indicated that three of our ML-based models delivered an excellent prediction of subsequent hip fracture outcomes (the area under the receiver operating characteristics curve: 0.92 (0.91-0.92), 0.92 (0·92-0·93), 0.92 (0·92-0·93)), outperforming previous prediction models based on claims and cohort data.

Conclusions: Our prediction models identify Chinese older people at high risk of subsequent hip fractures with specific baseline clinical and demographic variables such as length of hospital stay. These models might guide future targeted preventative treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1093/ageing/afae045DOI Listing

Publication Analysis

Top Keywords

hip fractures
20
subsequent hip
16
prediction models
16
prediction subsequent
12
hip fracture
12
machine learning
8
clinical prediction
8
hip
8
fractures older
8
older people
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!