Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Aim: To elucidate the pro-tumorigenic role of IncRNA FOXD3-AS1 in glioblastoma.
Material And Methods: The expression of miR-3918, FOXD3-AS1, and CCND1 was measured in glioblastoma cells and tissues using reverse transcriptase quantitative PCR (RT-qPCR). The effect of FOXD3-AS1 silencing on the proliferation of glioblastoma cells was assessed in vitro using CCK-8 and colony formation assays and in vivo using xenograft mouse models. Additionally, the expression levels of the apoptosis-related proteins, Bcl-2 and Bax, were assessed using western blotting. Bioinformatic analysis and luciferase reporter assays assisted by RNA immunoprecipitation (RIP) and RNA pull-down experiments were conducted to validate the interactions among FOXD3-AS1, CCND1, and miR-3918.
Results: FOXD3-AS1 and CCND1 were highly expressed in glioblastoma tissues and cells, whereas miR-3918 was poorly expressed. The expressions of FOXD3-AS1 and CCND1 were inversely associated with miR-3918 levels in glioblastoma tissues. FOXD3-AS1 silencing weakened the proliferative capacity and accelerated apoptosis of glioblastoma cells in vitro and hampered tumor growth in vivo. Mechanical investigations showed that FOXD3-AS1 knockdown increased miR-3918 expression and inhibited glioblastoma cell growth. Meanwhile, the miR-3918 inhibitor restored CCND1 expression and induced the opposite outcome.
Conclusion: FOXD3-AS1 facilitates the CCND1-driven progression of glioblastoma by serving as a competing endogenous RNA (ceRNA) for miR-3918. This suggests that FOXD3-AS1 may be a potential therapeutic target for the management of glioblastoma development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5137/1019-5149.JTN.38366-22.2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!