Almost 60% of oil and 40% of gas reserves worldwide are contained in carbonate reservoirs where acidizing stimulation is more challenging compared to sandstone reservoirs. Utilization of emulsified acids in matrix acidizing operations has been the most effective technique for more than half a century. This is due to the colloidal system's ability to generate deep, narrow conduits toward production zones under controlled retarded reactivity with the rock surface, along with the excellent sweep efficiency and corrosion inhibition of the well equipment. This Review attempts to review the various kinds of emulsified acids that are used for matrix acidizing of carbonate formations. The Review is trying to trace the innovations that have, gradually, been applied for enhancing the performance of emulsified acids for a variety of conditions, their limitations, and the developmental solutions such hybrid emulsifiers and pickering emulsions. In addition, the Review also discusses the parameters, characteristics, and measuring techniques required for the successful synthesis of a stable and quality emulsion while considering the environmental concerns raised toward the application of an emulsified acid system. From the reviewed publications, it can be summarized that macroemulsions are best suited for matrix acidizing applications over microemulsions due to low emulsifier concentrations and high acid volume retention; similarly, water in oil emulsions provide better retardation in a comparison to oil in water emulsions. The small droplet size of the emulsion yields high viscosity and stability. The compositional balance between each component present in the acidizing system is a crucial factor for optimum performance. Moreover, for future practice, much focus is required to design emulsified acids as ecofriendly systems that can leave the least amount of toxicity during and after implementation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938332PMC
http://dx.doi.org/10.1021/acsomega.3c07132DOI Listing

Publication Analysis

Top Keywords

emulsified acids
20
matrix acidizing
16
acids matrix
12
acidizing carbonate
8
carbonate reservoirs
8
acidizing
6
review
5
acids
5
emulsified
5
review emulsified
4

Similar Publications

Recent Advances in the Mechanisms of Quality Degradation and Control Technologies for Peanut Butter: A Literature Review.

Foods

January 2025

Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, School of Food and Health, Beijing Technology and Business University, Beijing 100080, China.

As the quality of life continues to improve globally, there is an increasing demand for nutritious and high-quality food products. Peanut butter, a widely consumed and nutritionally valuable product, must meet stringent quality standards and exhibit excellent stability to satisfy consumer expectations and maintain its competitive position in the market. However, its high fat content, particularly unsaturated fatty acids, makes it highly susceptible to quality deterioration during storage.

View Article and Find Full Text PDF

Dietary exposure assessment of 9 food emulsifiers to Korean population and their health effects.

Food Chem

January 2025

Food Additives Standard Division, Ministry of Food and Drug Safety, Osong, Cheongju 28159, Republic of Korea.

In this study, dietary exposures to 9 food emulsifiers, including 4 polysorbates and 5 esters of fatty acids, were assessed in Korean population. For the exposure assessment, three scenarios of the consumption, including mean and P95 in whole population and mean in consumed population, were applied. As a result, the EDIs of 9 emulsifiers were overall low compared to the ADIs.

View Article and Find Full Text PDF

Pharmacological Mechanisms of Bile Acids Targeting the Farnesoid X Receptor.

Int J Mol Sci

December 2024

Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China.

Bile acids (BAs), a category of amphiphilic metabolites synthesized by liver cells and released into the intestine via the bile duct, serve a vital role in the emulsification of ingested fats during the digestive process. Beyond their conventional emulsifying function, BAs, with their diverse structures, also act as significant hormones within the body. They are pivotal in facilitating nutrient absorption by interacting with the farnesoid X receptor (FXR), and they serve as key regulators of lipid and glucose metabolism, as well as immune system balance.

View Article and Find Full Text PDF

Production and Optimization of Biosurfactant Properties Using and Licuri Oil ().

Foods

December 2024

Centro de Tecnologia e Geociências, Programa de Pós-Graduação em Engenharia Química, Departamento de Engenharia Química, Universidade Federal de Pernambuco (UFPE), Avenida Professor Moraes Rego, n. 1235, Cidade Universitária, Recife 50670-901, PE, Brazil.

Optimizing biosurfactant (BS) production is key for sustainable industrial applications. This study investigated BS synthesis by using licuri oil, a renewable carbon source rich in medium-chain fatty acids. Process optimization was conducted via central composite design (CCD), adjusting concentrations of licuri oil, glucose, NHNO, and yeast extract.

View Article and Find Full Text PDF
Article Synopsis
  • Bile salts act as biosurfactants in the gastrointestinal tract, helping to emulsify and absorb fat-soluble nutrients and drugs.
  • The study utilized giant unilamellar vesicles (GUVs) to investigate the permeation behavior of bile salts and their mixed micelles, using sodium cholate (NaC) and various lipophilic substances.
  • Findings showed that below the critical micelle concentration (CMC), NaC causes endocytic changes in GUVs, while above the CMC, mixed micelles interact with the membrane differently, forming aggregates that migrate into the GUV, with variations observed depending on the type of lipophilic component used.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!