Motivations bias our responses to stimuli, producing behavioral outcomes that match our needs and goals. We describe a mechanism behind this phenomenon: adjusting the time over which stimulus-derived information is permitted to accumulate toward a decision. As a Drosophila copulation progresses, the male becomes less likely to continue mating through challenges. We show that a set of Copulation Decision Neurons (CDNs) flexibly integrates information about competing drives to mediate this decision. Early in mating, dopamine signaling restricts CDN integration time by potentiating CaMKII activation in response to stimulatory inputs, imposing a high threshold for changing behaviors. Later into mating, the timescale over which the CDNs integrate termination-promoting information expands, increasing the likelihood of switching behaviors. We suggest scalable windows of temporal integration at dedicated circuit nodes as a key but underappreciated variable in state-based decision-making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942309PMC
http://dx.doi.org/10.1101/2024.03.01.582988DOI Listing

Publication Analysis

Top Keywords

temporal integration
8
molecular control
4
control temporal
4
integration matches
4
matches decision-making
4
decision-making motivational
4
motivational state
4
state motivations
4
motivations bias
4
bias responses
4

Similar Publications

Objective: To develop a distributed algorithm to fit multi-center Cox regression models with time-varying coefficients to facilitate privacy-preserving data integration across multiple health systems.

Materials And Methods: The Cox model with time-varying coefficients relaxes the proportional hazards assumption of the usual Cox model and is particularly useful to model time-to-event outcomes. We proposed a One-shot Distributed Algorithm to fit multi-center Cox regression models with Time varying coefficients (ODACT).

View Article and Find Full Text PDF

Atrial fibrillation (AF), impacting nearly 50 million individuals globally, is a major contributor to ischaemic strokes, predominantly originating from the left atrial appendage (LAA). Current clinical scores like CHA₂DS₂-VASc, while useful, provide limited insight into the pro-thrombotic mechanisms of Virchow's triad-blood stasis, endothelial damage, and hypercoagulability. This study leverages biophysical computational modelling to deepen our understanding of thrombogenesis in AF patients.

View Article and Find Full Text PDF

In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.

View Article and Find Full Text PDF

With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.

View Article and Find Full Text PDF

Tracing human trait evolution through integrative genomics and temporal annotations.

Cell Genom

January 2025

Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia. Electronic address:

Understanding the evolution of human traits is a fundamental yet challenging question. In a recent Cell Genomics article, Kun et al. integrate large-scale genomic and phenotypic data, including deep-learning-derived imaging phenotypes, with temporal annotations to estimate the timing of evolutionary changes that led to differences in traits between modern humans and primates or hominin ancestors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!