We have measured the visually evoked activity of single neurons recorded in areas V1 and V2 of awake, fixating macaque monkeys, and captured their responses with a common computational model. We used a stimulus set composed of "droplets" of localized contrast, band-limited in orientation and spatial frequency; each brief stimulus contained a random superposition of droplets presented in and near the mapped receptive field. We accounted for neuronal responses with a 2-layer linear-nonlinear model, representing each receptive field by a combination of orientation- and scale-selective filters. We fit the data by jointly optimizing the model parameters to enforce sparsity and to prevent overfitting. We visualized and interpreted the fits in terms of an "afferent field" of nonlinearly combined inputs, dispersed in the 4 dimensions of space and spatial frequency. The resulting fits generally give a good account of the responses of neurons in both V1 and V2, capturing an average of 40% of the explainable variance in neuronal firing. Moreover, the resulting models predict neuronal responses to image families outside the test set, such as gratings of different orientations and spatial frequencies. Our results offer a common framework for understanding processing in the early visual cortex, and also demonstrate the ways in which the distributions of neuronal responses in V1 and V2 are similar but not identical.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942284PMC
http://dx.doi.org/10.1101/2024.03.04.583307DOI Listing

Publication Analysis

Top Keywords

neuronal responses
12
spatial frequency
8
receptive field
8
responses
5
foundations visual
4
visual form
4
form selectivity
4
selectivity neurons
4
neurons macaque
4
macaque measured
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!