Targeted, genome-scale gene perturbation screens using Clustered Regularly Interspaced Short Palindromic Repeats interference (CRISPRi) and activation (CRISPRa) have revolutionized eukaryotic genetics, advancing medical, industrial, and basic research. Although CRISPRi knockdowns have been broadly applied in bacteria, options for genome-scale overexpression face key limitations. Here, we develop a facile approach for genome-scale gene overexpression in bacteria we call, "CRISPRtOE" (CRISPR transposition and OverExpression). We create a platform for comprehensive gene targeting using CRISPR-associated transposition (CAST) and show that transposition occurs at a higher frequency in non-transcribed DNA. We then demonstrate that CRISPRtOE can upregulate gene expression in Proteobacteria with medical and industrial relevance by integrating synthetic promoters of varying strength upstream of target genes. Finally, we employ CRISPRtOE screening at the genome-scale in Escherichia coli, recovering known antibiotic targets and genes with unexplored roles in antibiotic function. We envision that CRISPRtOE will be a valuable overexpression tool for antibiotic mode of action, industrial strain optimization, and gene function discovery in bacteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942329PMC
http://dx.doi.org/10.1101/2024.03.01.582922DOI Listing

Publication Analysis

Top Keywords

targeted genome-scale
8
genome-scale overexpression
8
genome-scale gene
8
medical industrial
8
overexpression
5
gene
5
overexpression platform
4
platform proteobacteria
4
proteobacteria targeted
4
genome-scale
4

Similar Publications

ATR plays key roles in cellular responses to DNA damage and replication stress, a pervasive feature of cancer cells. ATR inhibitors (ATRi) are in clinical development for treating various cancers, including those with high replication stress, such as is elicited by ARID1A deficiency, but the cellular mechanisms that determine ATRi efficacy in such backgrounds are unclear. Here, we have conducted unbiased genome-scale CRISPR screens in ARID1A-deficient and proficient cells treated with ATRi.

View Article and Find Full Text PDF

Fitness landscapes of human microsatellites.

PLoS Genet

December 2024

Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.

Advances in DNA sequencing technology and computation now enable genome-wide scans for natural selection to be conducted on unprecedented scales. By examining patterns of sequence variation among individuals, biologists are identifying genes and variants that affect fitness. Despite this progress, most population genetic methods for characterizing selection assume that variants mutate in a simple manner and at a low rate.

View Article and Find Full Text PDF

GLiDe: a web-based genome-scale CRISPRi sgRNA design tool for prokaryotes.

BMC Bioinformatics

January 2025

MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.

Background: CRISPRi screening has become a powerful approach for functional genomic research. However, the off-target effects resulting from the mismatch tolerance between sgRNAs and their intended targets is a primary concern in CRISPRi applications.

Results: We introduce Guide Library Designer (GLiDe), a web-based tool specifically created for the genome-scale design of sgRNA libraries tailored for CRISPRi screening in prokaryotic organisms.

View Article and Find Full Text PDF

Analysis of genome-scale evolution has been difficult in large, endangered animals because opportunities to collect high-quality genetic samples are limited. There is a need for novel field-friendly, cost-effective genetic techniques. This study conducted an exome-wide analysis of a total of 42 chimpanzees (Pan troglodytes) across six African regions, providing insights into population discrimination techniques.

View Article and Find Full Text PDF

Background: Early-life exposures including diet, and the gut microbiome have been proposed to predispose infants towards multifactorial diseases later in life. Delivery via Cesarian section disrupts the establishment of the gut microbiome and has been associated with negative long-term outcomes. Here, we hypothesize that Cesarian section delivery alters not only the composition of the developing infant gut microbiome but also its metabolic capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!