Unlabelled: During corneal wound healing, stromal keratocytes transform into a repair phenotype that is driven by the release of cytokines, like transforming growth factor-beta 1 (TGF-β1) and platelet-derived growth factor-BB (PDGF-BB). Previous work has shown that TGF-β1 promotes the myofibroblast differentiation of corneal keratocytes in a manner that depends on PDGF signaling. In addition, changes in mechanical properties are known to regulate the TGF-β1-mediated differentiation of cultured keratocytes. While PDGF signaling acts synergistically with TGF-β1 during myofibroblast differentiation, how treatment with multiple growth factors affects stiffness-dependent differences in keratocyte behavior is unknown. Here, we treated primary corneal keratocytes with PDGF-BB and TGF-β1 and cultured them on polyacrylamide (PA) substrata of different stiffnesses. In the presence of TGF-β1 alone, the cells underwent stiffness-dependent myofibroblast differentiation. On stiff substrata, the cells developed robust stress fibers, exhibited high levels of ⍺-SMA staining, formed large focal adhesions (FAs), and exerted elevated contractile forces, whereas cells in a compliant microenvironment showed low levels of ⍺-SMA immunofluorescence, formed smaller focal adhesions, and exerted decreased contractile forces. When the cultured keratocytes were treated simultaneously with PDGF-BB however, increased levels of ⍺-SMA staining and stress fiber formation were observed on compliant substrata, even though the cells did not exhibit elevated contractility or focal adhesion size. Pharmacological inhibition of PDGF signaling disrupted the myofibroblast differentiation of cells cultured on substrata of all stiffnesses. These results indicate that treatment with PDGF-BB can decouple molecular markers of myofibroblast differentiation from the elevated contractile phenotype otherwise associated with these cells, suggesting that crosstalk in the mechanotransductive signaling pathways downstream of TGF-β1 and PDGF-BB can regulate the stiffness-dependent differentiation of cultured keratocytes.

Statement Of Significance: In vitro experiments have shown that changes in ECM stiffness can regulate the differentiation of myofibroblasts. Typically, these assays involve the use of individual growth factors, but it is unclear how stiffness-dependent differences in cell behavior are affected by multiple cytokines. Here, we used primary corneal keratocytes to show that treatment with both TGF-β1 and PDGF-BB disrupts the dependency of myofibroblast differentiation on substratum stiffness. In the presence of both growth factors, keratocytes on soft substrates exhibited elevated ⍺-SMA immunofluorescence without a corresponding increase in contractility or focal adhesion formation. This result suggests that molecular markers of myofibroblast differentiation can be dissociated from the elevated contractile behavior associated with the myofibroblast phenotype, suggesting potential crosstalk in mechanotransductive signaling pathways downstream of TGF-β1 and PDGF-BB.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942298PMC
http://dx.doi.org/10.1101/2024.02.29.582803DOI Listing

Publication Analysis

Top Keywords

myofibroblast differentiation
32
tgf-β1 pdgf-bb
16
corneal keratocytes
16
pdgf signaling
12
growth factors
12
levels ⍺-sma
12
elevated contractile
12
differentiation
11
myofibroblast
9
treatment tgf-β1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!