One of the key challenges of -means clustering is the seed selection or the initial centroid estimation since the clustering result depends heavily on this choice. Alternatives such as -means++ have mitigated this limitation by estimating the centroids using an empirical probability distribution. However, with high-dimensional and complex datasets such as those obtained from molecular simulation, -means++ fails to partition the data in an optimal manner. Furthermore, stochastic elements in all flavors of -means++ will lead to a lack of reproducibility. -means -Ary Natural Initiation (NANI) is presented as an alternative to tackle this challenge by using efficient -ary comparisons to both identify high-density regions in the data and select a diverse set of initial conformations. Centroids generated from NANI are not only representative of the data and different from one another, helping -means to partition the data accurately, but also deterministic, providing consistent cluster populations across replicates. From peptide and protein folding molecular simulations, NANI was able to create compact and well-separated clusters as well as accurately find the metastable states that agree with the literature. NANI can cluster diverse datasets and be used as a standalone tool or as part of our MDANCE clustering package.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942464 | PMC |
http://dx.doi.org/10.1101/2024.03.07.583975 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!