Bacteria can tolerate antibiotics despite lacking the genetic components for resistance. The prevailing notion is that tolerance results from depleted cellular energy or cell dormancy. In contrast to this view, many cells in the tolerant population of Escherichia coli can exhibit motility - a phenomenon that requires cellular energy, specifically, the proton-motive force (PMF). As these motile-tolerant cells are challenging to isolate from the heterogeneous tolerant population, their survival mechanism is unknown. Here, we discovered that motile bacteria segregate themselves from the tolerant population under micro-confinement, owing to their unique ability to penetrate micron-sized channels. Single-cell measurements on the motile-tolerant population showed that the cells retained a high PMF, but they did not survive through active efflux alone. By utilizing growth assays, single-cell fluorescence studies, and chemotaxis assays, we showed that the cells survived by dynamically inhibiting the function of existing porins in the outer membrane. A drug transport model for porin-mediated intake and efflux pump-mediated expulsion suggested that energetic tolerant cells withstand antibiotics by constricting their porins. The novel porin adaptation we have uncovered is independent of gene expression changes and may involve electrostatic modifications within individual porins to prevent extracellular ligand entry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10942424 | PMC |
http://dx.doi.org/10.1101/2024.03.07.583920 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!