Reprogramming scar fibroblasts into cardiomyocytes has been proposed to reverse the damage associated with myocardial infarction. However, the limited improvement in cardiac function calls for enhanced strategies. We reported enhanced efficacy of our miR reprogramming cocktail miR combo (miR-1, miR-133a, miR-208a, and miR-499) via RNA-sensing receptor stimulation. We hypothesized that we could combine RNA-sensing receptor activation with fibroblast reprogramming by chemically modifying miR combo. To test the hypothesis, miR combo was modified to enhance interaction with the RNA-sensing receptor Rig1 via the addition of a 5'-triphosphate (5'ppp) group. Importantly, when compared with unmodified miR combo, 5'ppp-modified miR combo markedly improved reprogramming efficacy . Enhanced reprogramming efficacy correlated with a type-I interferon immune response with strong and selective secretion of interferon β (IFNβ). Antibody blocking studies and media replacement experiments indicated that 5'ppp-miR combo utilized IFNβ to enhance fibroblast reprogramming efficacy. In conclusion, miRs can acquire powerful additional roles through chemical modification that potentially increases their clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10943962 | PMC |
http://dx.doi.org/10.1016/j.omtn.2024.102160 | DOI Listing |
J Mol Cell Cardiol
May 2024
Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, United States of America. Electronic address:
We have demonstrated that directly reprogramming cardiac fibroblasts into new cardiomyocytes via miR combo improves cardiac function in the infarcted heart. However, major challenges exist with delivery and efficacy. During a screening based approach to improve delivery, we discovered that C166-derived EVs were effective delivery agents for miR combo both in vitro and in vivo.
View Article and Find Full Text PDFMol Ther Nucleic Acids
June 2024
Mandel Center for Hypertension and Atherosclerosis, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710, USA.
Reprogramming scar fibroblasts into cardiomyocytes has been proposed to reverse the damage associated with myocardial infarction. However, the limited improvement in cardiac function calls for enhanced strategies. We reported enhanced efficacy of our miR reprogramming cocktail miR combo (miR-1, miR-133a, miR-208a, and miR-499) via RNA-sensing receptor stimulation.
View Article and Find Full Text PDFJ Clin Apher
February 2024
Inflammatory Bowel Disease Unit, Gastroenterology Department, La Fe University and Polytechnic Hospital, Valencia, Spain.
Background: Ulcerative colitis (UC) is an inflammatory bowel disease characterized by chronic inflammation of the gastrointestinal tract, affecting millions of individuals throughout the world, and producing an impaired health-related quality of life. Granulocyte and monocyte apheresis (GMA) is a therapeutic option for UC management to induce remission by selective removal of activated leukocytes from bloodstream. Despite the knowledge of the important role of epigenetics in UC pathogenesis, and in the response to different treatments, nothing is known about the role of microRNAs in GMA therapy in UC patients.
View Article and Find Full Text PDFJ Biol Chem
May 2023
Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, North Carolina, USA. Electronic address:
Directly reprogramming fibroblasts into cardiomyocytes improves cardiac function in the infarcted heart. However, the low efficacy of this approach hinders clinical applications. Unlike the adult mammalian heart, the neonatal heart has an intrinsic regenerative capacity.
View Article and Find Full Text PDFCancers (Basel)
December 2022
Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
Liquid biopsy has dramatically changed cancer management in the last decade; however, despite the huge number of miRNA signatures available for diagnostic or prognostic purposes, it is still unclear if dysregulated miRNAs in the bloodstream could be used to develop miRNA-based therapeutic approaches. In one author's previous work, nine miRNAs were found to be dysregulated in early-stage colon cancer (CRC) patients by NGS analysis followed by RT-dd-PCR validation. In the present study, the biological effects of the targeting of the most relevant dysregulated miRNAs with anti-miRNA peptide nucleic acids (PNAs) were verified, and their anticancer activity in terms of apoptosis induction was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!