Highly activated aerobic glycolysis provides the metabolic requirements for tumor cell growth and proliferation. Erianin, a natural product isolated from , has been reported to exert antitumor activity in multiple cancers. However, whether Erianin exerts inhibitory effects on aerobic glycolysis and the inherent mechanism remain poorly defined in non-small cell lung cancer (NSCLC). Here, we showed that Erianin inhibited the cell viability and proliferation, and induced apoptosis in NSCLC cells. Moreover, Erianin overtly suppressed aerobic glycolysis via decreasing HK2 expression. Mechanistically, Erianin dose-dependently curbed the Akt-GSK3β signaling pathway phosphorylation activation, which afterwards downregulated HK2 expression. Meanwhile, Erianin inhibited HCC827 tumor growth Taken together, our results suggest that the natural product Erianin can suppress aerobic glycolysis and exert potent anticancer effects via the Akt-GSK3β signaling pathway in NSCLC cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10937289PMC
http://dx.doi.org/10.7150/jca.92780DOI Listing

Publication Analysis

Top Keywords

aerobic glycolysis
20
erianin
8
natural product
8
erianin inhibited
8
nsclc cells
8
hk2 expression
8
akt-gsk3β signaling
8
signaling pathway
8
aerobic
5
glycolysis
5

Similar Publications

The natural product micheliolide promotes the nuclear translocation of GAPDH via binding to Cys247 and induces glioblastoma cell death in combination with temozolomide.

Biochem Pharmacol

January 2025

College of Chemistry and Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Nankai University, Tianjin 300071, China. Electronic address:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is significantly upregulated in glioblastoma (GBM) and plays a crucial role in cell apoptosis and drug resistance. Micheliolide (MCL) is a natural product with a variety of antitumour activities, and the fumarate salt form of dimethylamino MCL (DMAMCL; commercial name ACT001) has been tested in clinical trials for recurrent GBM; this compound suppresses the proliferation of GBM cells by rewiring aerobic glycolysis. Herein, we demonstrated that MCL directly targets GAPDH through covalent binding to the cysteine 247 (Cys247) residue.

View Article and Find Full Text PDF

Metabolic Reprogramming of Neutrophils in the Tumor Microenvironment: Emerging Therapeutic Targets.

Cancer Lett

January 2025

Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China. Electronic address:

Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production.

View Article and Find Full Text PDF

Potential Strategies Applied by to Survive the Immunity of Its Crustacean Hosts.

Pathogens

January 2025

Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.

is the specific pathogen for "milky disease" in the Chinese mitten crab (), accounting for huge losses to the industry. And yet, there is no precise study describing the pathogenesis of , largely hindering the development of novel control methods against its causing diseases. Here, we compared the transcriptomes of cells collected from a control group (cultured without hemocytes) and a treatment group (cultured with hemocytes), using RNA sequencing.

View Article and Find Full Text PDF

Selol is a semi-synthetic mixture of selenized triglycerides. The results of biological studies revealed that Selol exhibits several anticancer effects. However, studies on its potential anti-inflammatory activity are scarce, and underlying signaling pathways are unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!