Background: Paramedics are expected to record electrocardiograms (ECGs) as part of their clinical assessment; however, it is an extremely difficult skill to learn and understand as it has a high intrinsic cognitive load which can also be challenging to teach effectively.
Aims: This article will explore the use of cognitive load theory to assist in the teaching of ECG interpretation within the context of paramedical education.
Description: Cognitive load theory can be useful to aid teaching within complex medical and health science domains including clinical skills teaching.
Conclusions: The application of cognitive load theory to the teaching of ECG interpretation can be useful as it allows for the development of understanding, building schemata linking information currently being learned to knowledge already gained within the long-term memory, which can maximise germane load by the appropriate selection of intrinsic load, minimising extraneous load therefore not overloading the working memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tct.13759 | DOI Listing |
NPJ Parkinsons Dis
January 2025
Brain Electrophysiology and Epilepsy Lab (BEE-L), Epilepsy and EEG Unit, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
We aimed to study the effect of Parkinson's disease (PD) and motor-cognitive load on the interplay between activation level and spatial complexity. To that end, 68 PD patients and 30 controls underwent electroencephalography (EEG) recording while executing visual single- and dual- Go/No-go tasks. The EEG underwent source localization, followed by parcellation of the neural activity into 116 regions of interest.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
VIB-UGent Center for Inflammation Research, Ghent, Belgium.
Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Weill Cornell Medicine, New York, NY, USA.
Background: The strongest genetic risk factors for AD include the e4 allele of APOE and the R47H point mutation in the TREM2 receptor. TREM2 is required for the induction of a disease-associated microglia (DAM) signature and microglial neurodegenerative phenotype (MGnD) in response to disease pathology, signatures which both include APOE upregulation. There is currently limited information regarding how the TREM2-APOE pathway ultimately contributes to AD risk, and downstream mechanisms of this pathway are unknown.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.
View Article and Find Full Text PDFBackground: Autosomal dominant Alzheimer's Disease (ADAD) represents around 0.5% of all AD cases, and is caused by mutations in PSEN1, PSEN2 and APP genes. Gene expression studies can be useful for unravelling the physiopathology of AD and identifying potential biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!