TaNAM-6A is essential for nitrogen remobilisation and regulates grain protein content in wheat (Triticum aestivum L.).

Plant Cell Environ

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.

Published: June 2024

Grain protein content (GPC) is a crucial quality trait in bread wheat, which is influenced by the key transcription factor TaNAM. However, the regulatory mechanisms of TaNAM have remained largely elusive. In this study, a new role of TaNAM was unveiled in regulating nitrogen remobilisation which impacts GPC. The TaNAM knockout mutants generated by clustered regularly interspaced short palindromic repeats/Cas9 exhibited significantly delayed senescence and lower GPC, while overexpression of TaNAM-6A resulted in premature senility and much higher GPC. Further analysis revealed that TaNAM directly activates the genes TaNRT1.1 and TaNPF5.5s, which are involved in nitrogen remobilisation. This activity aids in the transfer of nitrogen from leaves to grains for protein synthesis. In addition, an elite allele of TaNAM-6A, associated with high GPC, was identified as a candidate gene for breeding high-quality wheat. Overall, our work not only elucidates the potential mechanism of TaNAM-6A affecting bread wheat GPC, but also highlights the significance of nitrogen remobilisation from senescent leaves to grains for protein accumulation. Moreover, our research provides a new target and approach for improving the quality traits of wheat, particularly the GPC.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14878DOI Listing

Publication Analysis

Top Keywords

nitrogen remobilisation
16
grain protein
8
protein content
8
bread wheat
8
leaves grains
8
grains protein
8
wheat gpc
8
gpc
7
nitrogen
5
wheat
5

Similar Publications

Increasing wheat ( L.) yield and grain protein concentration (GPC) without excessive nitrogen (N) inputs requires understanding the genotypic variations in N accumulation, partitioning, and utilization strategies. This study evaluated whether high protein genotypes exhibit increased N accumulation (herein also expressed as N nutrition index, NNI) and partitioning (including remobilization from vegetative organs) compared to low-protein genotypes under low and high N conditions.

View Article and Find Full Text PDF

Coordination of Carbon and Nitrogen Metabolism Through Well-Timed Mid-Stage Nitrogen Compensation in Japonica Super Rice.

Plants (Basel)

November 2024

Jiangsu Key Laboratory of Crop Cultivation and Physiology, Research Institute of Rice Industrial Engineering Technology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.

The carbon and nitrogen (N) metabolism of rice under different mid-stage N compensation timings is unclear. Two Japonica super rice cultivars were examined under four N compensation timings (N1-N3: N compensation at mid-tillering, panicle initiation, and spikelet differentiation. N0: no N compensation) and CK with no N application.

View Article and Find Full Text PDF

Vadose zone flushing of fertilizer tracked by isotopes of water and nitrate.

Vadose Zone J

May 2024

Groundwater Characterization and Remediation Division, US Environmental Protection Agency, Ada, Oklahoma, USA.

A substantial fraction of nitrogen (N) fertilizer applied in agricultural systems is not incorporated into crops and moves below the rooting zone as nitrate (NO ). Understanding mechanisms for soil N retention below the rooting zone and leaching to groundwater is essential for our ability to track the fate of added N. We used dual stable isotopes of nitrate ( N-NO and O-NO ) and water ( O-HO and H-HO) to understand the mechanisms driving nitrate leaching at three depths (0.

View Article and Find Full Text PDF

Nitrogen (N) remobilization from mature leaves to new shoots (NSs) is closely related to the quality of green tea in the spring season, which subsequently determines its economic value. However, the underlying N remobilization mechanism remains poorly understood. Here, we demonstrate that >80% of the recovered 15N was partitioned in the first mature leaves that supply NSs.

View Article and Find Full Text PDF

Autophagy is a vesicular mechanism that plays a fundamental role in nitrogen remobilization from senescing leaves to seeds. The Arabidopsis (Arabidopsis thaliana) autophagy (atg) mutants exhibit early senescence, reduced biomass, and low seed yield. The atg seeds also exhibit major changes in N and C concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!