Prolonged inflammation leads to the genesis of various inflammatory diseases such as atherosclerosis, cancer, inflammatory bowel disease, Alzheimer's, etc. The uncontrolled inflammatory response is characterized by the excessive release of pro-inflammatory mediators such as nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-1alpha (IL-1α), and inflammatory enzymes such as cyclooxygenase-2 (COX-2). Hence, the downregulation of these inflammatory mediators is an active therapy to control aberrant inflammation and tissue damage. To address this, herein, we present the rational design and synthesis of novel phytochemical entities (NPCEs) through strategic linker-based molecular hybridization of aromatic/heteroaromatic fragments with the labdane dialdehyde, isolated from the medicinally and nutritionally significant rhizomes of the plant . To validate the anti-inflammatory potential, we employed a comprehensive study assessing its inhibitory effect on the COX-2 enzyme and other inflammatory mediators, ., NO, TNF-α, IL-6, and IL-1α, in bacterial lipopolysaccharide-stimulated macrophages, as well as molecular modeling studies targeting the inflammation regulator COX-2 enzyme. Among the synthesized novel compounds, exhibited the highest anti-inflammatory potential by inhibiting the COX-2 enzyme (IC = 17.67 ± 0.89 μM), with a 4-fold increased activity relative to the standard drug indomethacin (IC = 67.16 ± 0.17 μM). also significantly reduced the levels of LPS-induced NO, TNF-α, IL-6, and IL-1α, much better than the positive control. Molecular mechanistic studies revealed that suppressed the expression of COX-2 and pro-inflammatory cytokine release dose-dependently, which was associated with the inhibition of the NF-κB signaling pathway. This infers that the labdane derivative is a promising lead candidate as an anti-inflammatory agent to further explore its therapeutic landscape.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.3c09536 | DOI Listing |
Comput Biol Chem
January 2025
Pharmacy college, Al-Farahidi University, Iraq.
Cyclooxygenase-2 (COX-2), a key enzyme in the inflammatory pathway, is the target for various nonsteroidal anti-inflammatory drugs (NSAIDs) and selective inhibitors known as coxibs. This study focuses on the development of novel imidazole derivatives as COX-2 inhibitors, utilizing a Structure-Activity Relationship (SAR) approach to enhance binding affinity and selectivity. Molecular docking was performed using Autodock Vina, revealing binding energies of -6.
View Article and Find Full Text PDFJ Tradit Complement Med
January 2025
Korean Medicine Research Center for Bi-Wi Control Based Gut-Brain System Regulation, College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, South Korea.
Background: Jeoryeong-tang (JRT) was first recorded in . It is composed of Polyporus Sclerotium, Poria, Asini Corii Colla, Alisma Rhizome, and Talcum at the same weight ratio. These medicinal materials are known for diuretic and hemostatic effects and have been traditionally used to treat kidney and bladder diseases.
View Article and Find Full Text PDFInflammopharmacology
January 2025
Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand.
Maejo 341 Sweet potato (MSP) is a new purple sweet potato variety cultivated in Northern Thailand, but its health benefits are unknown. This study aimed to investigate its antioxidant, anti-inflammatory, and anti-osteoporotic activities, as well as its anthocyanin content. The peel and flesh of MSP were extracted with ethanol and water.
View Article and Find Full Text PDFChronic inflammation and heme-iron overload can result from bacterial hemolysis. Along with the synthetic drugs, numerous traditional and functional food approaches are equally trialed to eradicate the problem. As a prospective new source of dietary protein hydrolysates, freshwater mollusks () have recently drawn huge interest from researchers.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
Background: The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!