AI Article Synopsis

  • A study looked at how well a computer program can use pictures of the eye to find a specific eye disease called Fuchs endothelial corneal dystrophy (FECD).
  • The program was tested on many pictures and worked well, especially in finding FECD in the center of the eye, and even better for finding healthy cells in peripheral images.
  • The findings suggest that this computer program could help eye doctors see how the disease changes over time and figure out who might need special treatments.

Article Abstract

Background: To describe the diagnostic performance of a deep learning (DL) algorithm in detecting Fuchs endothelial corneal dystrophy (FECD) based on specular microscopy (SM) and to reliably detect widefield peripheral SM images with an endothelial cell density (ECD) > 1000 cells/mm.

Methods: Five hundred and forty-seven subjects had SM imaging performed for the central cornea endothelium. One hundred and seventy-three images had FECD, while 602 images had other diagnoses. Using fivefold cross-validation on the dataset containing 775 central SM images combined with ECD, coefficient of variation (CV) and hexagonal endothelial cell ratio (HEX), the first DL model was trained to discriminate FECD from other images and was further tested on an external set of 180 images. In eyes with FECD, a separate DL model was trained with 753 central/paracentral SM images to detect SM with ECD > 1000 cells/mm and tested on 557 peripheral SM images. Area under curve (AUC), sensitivity and specificity were evaluated.

Results: The first model achieved an AUC of 0.96 with 0.91 sensitivity and 0.91 specificity in detecting FECD from other images. With an external validation set, the model achieved an AUC of 0.77, with a sensitivity of 0.69 and specificity of 0.68 in differentiating FECD from other diagnoses. The second model achieved an AUC of 0.88 with 0.79 sensitivity and 0.78 specificity in detecting peripheral SM images with ECD > 1000 cells/mm.

Conclusions: Our pilot study developed a DL model that could reliably detect FECD from other SM images and identify widefield SM images with ECD > 1000 cells/mm in eyes with FECD. This could be the foundation for future DL models to track progression of eyes with FECD and identify candidates suitable for therapies such as Descemet stripping only.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946096PMC
http://dx.doi.org/10.1186/s40662-024-00378-1DOI Listing

Publication Analysis

Top Keywords

images
12
peripheral images
12
fecd images
12
eyes fecd
12
model achieved
12
achieved auc
12
fecd
9
deep learning
8
fuchs endothelial
8
specular microscopy
8

Similar Publications

Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation and execution of speech.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Purpose: To compare the assessment of clinically relevant retinal and choroidal lesions as well as optic nerve pathologies using a novel three-wavelength ultra-widefield (UWF) scanning laser ophthalmoscope with established retinal imaging techniques for ophthalmoscopic imaging.

Methods: Eighty eyes with a variety of retinal and choroidal lesions were assessed on the same time point using Topcon color fundus photography (CFP) montage, Optos red/green (RG), Heidelberg SPECTRALIS MultiColor 55-color montage (MCI), and novel Optos red/green/blue (RGB). Paired images of the optic nerve, retinal, or choroidal lesions were initially diagnosed based on CFP imaging.

View Article and Find Full Text PDF

Purpose: To compare a novel high-resolution optical coherence tomography (OCT) with improved axial resolution (High-Res OCT) with conventional spectral-domain OCT (SD-OCT) with regard to their capacity to characterize the disorganization of the retinal inner layers (DRIL) in diabetic maculopathy.

Methods: Diabetic patients underwent multimodal retinal imaging (SD-OCT, High-Res OCT, and color fundus photography). Best-corrected visual acuity and diabetes characteristics were recorded.

View Article and Find Full Text PDF

The approaches used to determine the medicinal properties of the plants are often destructive, labor-intensive, time-consuming, and expensive, making it impossible to analyze their quality analysis online. Performance of hyperspectral imaging (HSI) integrated with intelligent techniques to overcome these problems was investigated in this research. For this purpose, three classification methods-support vector machine, random forest (RF), and extreme gradient boosting-were studied for the classification of plants in three classes of medicinal, edible, and ornamental for the organs of leaf, stem, flower, and root.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!