Lose-lose consequences of bacterial community-driven invasions in soil.

Microbiome

Microbial Ecology Cluster, Genomics Research in Ecology and Evolution in Nature (GREEN), Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9747 AG, Groningen, The Netherlands.

Published: March 2024

Background: Community-driven invasion, also known as community coalescence, occurs widely in natural ecosystems. Despite that, our knowledge about the process and mechanisms controlling community-driven invasion in soil ecosystems is lacking. Here, we performed a set of coalescence experiments in soil microcosms and assessed impacts up to 60 days after coalescence by quantifying multiple traits (compositional, functional, and metabolic) of the invasive and coalescent communities.

Results: Our results showed that coalescences significantly triggered changes in the resident community's succession trajectory and functionality (carbohydrate metabolism), even when the size of the invasive community is small (~ 5% of the resident density) and 99% of the invaders failed to survive. The invasion impact was mainly due to the high suppression of constant residents (65% on average), leading to a lose-lose situation where both invaders and residents suffered with coalescence. Our results showed that surviving residents could benefit from the coalescence, which supports the theory of "competition-driven niche segregation" at the microbial community level. Furthermore, the result showed that both short- and long-term coalescence effects were predicted by similarity and unevenness indexes of compositional, functional, and metabolic traits of invasive communities. This indicates the power of multi-level traits in monitoring microbial community succession. In contrast, the varied importance of different levels of traits suggests that competitive processes depend on the composition of the invasive community.

Conclusions: Our results shed light on the process and consequence of community coalescences and highlight that resource competition between invaders and residents plays a critical role in soil microbial community coalescences. These findings provide valuable insights for understanding and predicting soil microbial community succession in frequently disturbed natural and agroecosystems. Video Abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10946201PMC
http://dx.doi.org/10.1186/s40168-024-01763-7DOI Listing

Publication Analysis

Top Keywords

microbial community
16
community-driven invasion
8
compositional functional
8
functional metabolic
8
invaders residents
8
community succession
8
community coalescences
8
soil microbial
8
community
7
coalescence
6

Similar Publications

Rare constituents of the nasal microbiome contribute to the acute exacerbation of chronic rhinosinusitis.

Inflamm Res

January 2025

Department of Otolaryngology, Peking University Third Hospital, Haidian District, No. 49 Huayuan North Road, Beijing, 100191, People's Republic of China.

Background: Dysbiosis of the nasal microbiome is considered to be related to the acute exacerbation of chronic rhinosinusitis (AECRS). The microbiota in the nasal cavity of AECRS patients and its association with disease severity has rarely been studied. This study aimed to characterize nasal dysbiosis in a prospective cohort of patients with AECRS.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) is a fatal disease caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). To date, several vaccines have been developed to combat the spread of this virus. Mucosal vaccines using food-grade bacteria, such as Lactobacillus spp.

View Article and Find Full Text PDF

The HoloFood project used a hologenomic approach to understand the impact of host-microbiota interactions on salmon and chicken production by analysing multiomic data, phenotypic characteristics, and associated metadata in response to novel feeds. The project's raw data, derived analyses, and metadata are deposited in public, open archives (BioSamples, European Nucleotide Archive, MetaboLights, and MGnify), so making use of these diverse data types may require access to multiple resources. This is especially complex where analysis pipelines produce derived outputs such as functional profiles or genome catalogues.

View Article and Find Full Text PDF

Attraction of Bactrocera cucurbitae (Coquillett) to selected gut microbiota supernatants: implications for pest control.

Pest Manag Sci

January 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.

Background: Bactrocera cucurbitae (Coquillett) is a distructive quarantine insect pest that causes significant economic losses on cucurbit crops. To explore a green control approach, we investigated the behavioral responses of B. cucurbitae larvae and adults to bacterial suspensions, sediments, and supernatants derived from eight gut microbial strains across four distinct genera.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!