With the development of technology, there is a growing demand for wearable electronics that can fulfill different application scenarios. Hydrogel-based sensors are considered ideal candidates for realizing multifunctional wearable flexible devices. However, there are great challenges in preparing hydrogel-based sensors with both superior mechanical and electrical properties. Herein, we report a composite conductive hydrogel prepared by using a dynamically crosslinked carboxymethyl chitosan network and a covalently crosslinked polymer network, and carboxylated carbon nanotubes as conductive filler. The carboxymethyl chitosan-based hydrogels had excellent mechanical properties and strength (tensile strength of 475.4 kPa, and compressive strength of 1.9 MPa) and ultra-high conductivity (0.19 S·cm). Based on the above characteristics, the hydrogel could accurately identify the movement signals of the human body and different writing signals, and achieve encrypted transmission of signals, broadening the application scenarios. In addition, a triboelectric nanogenerator (TENG) was fabricated based on the hydrogel, which had an outstanding output performance with open-circuit voltage of 336 V, short-circuit current of 18 μA, transferred charge of 52 nC and maximum power density of 340 mW·m, and could power small devices. This work is expected to provide new ideas for the development of self-powered, multi-functional wearable, and flexible polysaccharide-based devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2024.121960 | DOI Listing |
Int J Biol Macromol
January 2025
Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:
In the field of cosmetics, epigallocatechin gallate (EGCG) is highly valued for its multiple effects such as delaying photoaging, whitening, anti-allergy, acne removal, astringency, and moisturizing. However, due to the active chemical properties of EGCG, there are challenges in terms of stability and transdermal absorption, which limits its widespread application in cosmetics. Therefore, we utilized supramolecular modification technology to form supramolecular carboxymethyl chitosan-EGCG-trehalose (CC-EGCG) by combining EGCG with carboxymethyl chitosan and trehalose, enhancing its stability.
View Article and Find Full Text PDFRegen Biomater
November 2024
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
The hypoxia microenvironment post-myocardial infarction (MI) critically disturbs cellular metabolism and inflammation response, leading to scarce bioenergy supplying, prolonged inflammatory phase and high risk of cardiac fibrosis during cardiac restoration. Herein, an injectable hydrogel is prepared by Schiff base reaction between fructose-1,6-bisphosphate (FBP)-grafted carboxymethyl chitosan (CF) and oxidized dextran (OD), followed by loading fucoidan-coated baicalin (BA)-encapsulated zein nanoparticles (BFZ NPs), in which immunoregulatory and metabolism improving functions are integrally included. The grafted FBP serves to enhance glycolysis and provide more bioenergy for cardiomyocytes survival under hypoxia microenvironment, and elevating cellular antioxidant capacity pentose phosphate pathway.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacy, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou 221003, China.
To design a multifunctional nanozyme hydrogel with antibacterial, photo-responsive nitric oxide-releasing, and antioxidative properties for promoting the healing of infected wounds. We first developed ultra-small silver nanoparticles (NPs)-decorated sodium nitroprusside-doped Prussian blue (SNPB) NPs, referred to as SNPB@Ag NPs, which served as a multifunctional nanozyme. Subsequently, this nanozyme, together with geniposide (GE), was incorporated into a thermo-sensitive hydrogel, formulated from Poloxamer 407 and carboxymethyl chitosan, creating a novel antibacterial wound dressing designated as GE/SNPB@Ag hydrogel.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
The application of biodegradable chelating agents in phytoremediation is a promising approach. This study aimed to investigate the effects and roles of underlying mechanisms of water-soluble carboxymethyl chitosan (WSCC) and rhamnolipids (RLs) on the remediation of Cd-contaminated soil by Hylotelephium spectabile. WSCC and RLs mediated the growth of H.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China. Electronic address:
This study aimed to develop ultrasonically-assisted, alcohol-free, and noncorrosive aqueous zein/turmeric essential oil (TEO)-loaded nanoemulsions (NEs) to stimulate pullulan/carboxymethyl chitosan (P/CMCS)-based edible films for mango fruit preservation. The influence of innovative sonicated zein/TEO-based NEs (ZTNEs) as nanofillers on the physico-mechanical characteristics of the resulting P/CMCS edible films was investigated. A stable and well-dispersed ZTNE was achieved using 20 % zein with 10 min of ultrasound treatment, leading to a reduced droplet size (194.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!