Mechanism of peroxymonosulfate activation by nanoparticle Co@N-C: Experimental investigation and theoretical calculation.

Chemosphere

Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China; Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China. Electronic address:

Published: April 2024

The release of organic dyes, such as Rhodamine B (RhB), into industrial wastewater has led to significant issues with color pollution in aquatic environments. Herein, we prepared a cobalt nanoparticles (NPs)-based catalyst with the nitrogen-doped carbon-support (Co@N-C) for effective PMS activation. The Co@N-C/PMS system demonstrated the excellent catalytic activity of Co@N-C for activating PMS, achieving nearly 100% degradation of RhB. Singlet oxygen (O) and sulfate radicals (SO•) were dominant reactive oxygen species for RhB degradation. Density functional theory (DFT) calculations substantiated that the production of O commenced with the initial generation of *OH through hydrogen abstraction from PMS, culminating in the direct release of oxygen to form O (PMS→*OH→O*→O). The generation of SO• was attributed to electron transfer to PMS from the surface of Co NPs (Co→Co→Co) and the C-N shell (Co→Co). The research findings provided new insights into the development of Co-based heterogeneous catalysis for advanced oxidation of refractory organic pollutants in wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.141720DOI Listing

Publication Analysis

Top Keywords

mechanism peroxymonosulfate
4
peroxymonosulfate activation
4
activation nanoparticle
4
nanoparticle co@n-c
4
co@n-c experimental
4
experimental investigation
4
investigation theoretical
4
theoretical calculation
4
calculation release
4
release organic
4

Similar Publications

A polyacrylamide gel method has been used to synthesize a variety of polyvalent-transition-metal-doped Ni position of high entropy spinel oxides (NiZnMgCuCo)AlO-800 °C (A) on the basis of NiAlO, and the catalytic activity of A is studied under the synergistic action of peroxymonosulfate (PMS) activation and simulated sunlight. The A containing polyvalent transition metals (Ni, Cu, and Co) can effectively activate PMS and efficiently degrade levofloxacin (LEV) and tetracycline hydrochloride (TCH) under simulated sunlight irradiation. After 90 min of light exposure, the degradation percentages of LEV (50 mg L) and TCH (100 mg L) degrade by the A/PMS/vis system reach 87.

View Article and Find Full Text PDF

Upcycling organic and inorganic waste into value-added metal-organic frameworks (MOFs) presents a sustainable strategy for mitigating waste pollution and promoting economic viability. However, rapid synthesis of MOF materials derived from actual industrial waste under mild conditions remains challenging. Herein, Fe-MOF MIL-88B(Fe) was successfully fabricated within 1 h at room temperature using galvanizing pickling waste liquid and terephthalic acid derived from waste poly(ethylene terephthalate).

View Article and Find Full Text PDF

Boosting peroxymonosulfate activation for complete removal of gatifloxacin by a bead-chain zeolitic imidazolate framework composite.

J Colloid Interface Sci

January 2025

College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China. Electronic address:

A bead-chain metal-organic framework composite was designed and synthesized by assembling a zeolitic imidazolate framework (ZIF) onto manganese dioxide (MnO) nanowires. The prepared catalyst MnO@ZIF-X (X = 1, 2 and 3) was used to facilitate gatifloxacin (GAT) degradation by using potassium peroxymonopulfate (PMS) as an activator. MnO@ZIF-2 exhibited excellent catalytic performance, achieving 100 % degradation of GAT (10 mg/L) in the presence of PMS (1 mM) in 15 min, and the toxicity of the majority of degradation intermediates decreased.

View Article and Find Full Text PDF

Enhanced Fe═O Generation via Peroxymonosulfate Activation by an Edge-Site Engineered Single-Atom Iron Catalyst.

Small

January 2025

School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.

As an oxidant, the ferryl-oxo complex (Fe═O) offers excellent reactivity and selectivity for degrading recalcitrant organic contaminants. However, enhancing Fe═O generation on heterogeneous surfaces remains challenging because the underlying formation mechanism is poorly understood. This study introduces edge defects onto a single-atom Fe catalyst (FeNC-edge) to promote Fe═O generation via peroxymonosulfate (PMS) activation.

View Article and Find Full Text PDF

A nitrogen-coordinated Fe single-atom catalyst (SA Fe-N/C) is synthesized using a homogeneous ethanol-based dissolution system with bamboo kraft lignin serving as the carbon source. Uniformly dispersed Fe atoms with an interatomic distance of less than 2 Å throughout the SA Fe-N/C structure are revealed through X-ray absorption spectral analysis and HAADF-STEM images, which possessed a high Fe loading of 2.69%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!