The release of organic dyes, such as Rhodamine B (RhB), into industrial wastewater has led to significant issues with color pollution in aquatic environments. Herein, we prepared a cobalt nanoparticles (NPs)-based catalyst with the nitrogen-doped carbon-support (Co@N-C) for effective PMS activation. The Co@N-C/PMS system demonstrated the excellent catalytic activity of Co@N-C for activating PMS, achieving nearly 100% degradation of RhB. Singlet oxygen (O) and sulfate radicals (SO•) were dominant reactive oxygen species for RhB degradation. Density functional theory (DFT) calculations substantiated that the production of O commenced with the initial generation of *OH through hydrogen abstraction from PMS, culminating in the direct release of oxygen to form O (PMS→*OH→O*→O). The generation of SO• was attributed to electron transfer to PMS from the surface of Co NPs (Co→Co→Co) and the C-N shell (Co→Co). The research findings provided new insights into the development of Co-based heterogeneous catalysis for advanced oxidation of refractory organic pollutants in wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2024.141720 | DOI Listing |
Small
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
A polyacrylamide gel method has been used to synthesize a variety of polyvalent-transition-metal-doped Ni position of high entropy spinel oxides (NiZnMgCuCo)AlO-800 °C (A) on the basis of NiAlO, and the catalytic activity of A is studied under the synergistic action of peroxymonosulfate (PMS) activation and simulated sunlight. The A containing polyvalent transition metals (Ni, Cu, and Co) can effectively activate PMS and efficiently degrade levofloxacin (LEV) and tetracycline hydrochloride (TCH) under simulated sunlight irradiation. After 90 min of light exposure, the degradation percentages of LEV (50 mg L) and TCH (100 mg L) degrade by the A/PMS/vis system reach 87.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
Upcycling organic and inorganic waste into value-added metal-organic frameworks (MOFs) presents a sustainable strategy for mitigating waste pollution and promoting economic viability. However, rapid synthesis of MOF materials derived from actual industrial waste under mild conditions remains challenging. Herein, Fe-MOF MIL-88B(Fe) was successfully fabricated within 1 h at room temperature using galvanizing pickling waste liquid and terephthalic acid derived from waste poly(ethylene terephthalate).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637000, PR China. Electronic address:
A bead-chain metal-organic framework composite was designed and synthesized by assembling a zeolitic imidazolate framework (ZIF) onto manganese dioxide (MnO) nanowires. The prepared catalyst MnO@ZIF-X (X = 1, 2 and 3) was used to facilitate gatifloxacin (GAT) degradation by using potassium peroxymonopulfate (PMS) as an activator. MnO@ZIF-2 exhibited excellent catalytic performance, achieving 100 % degradation of GAT (10 mg/L) in the presence of PMS (1 mM) in 15 min, and the toxicity of the majority of degradation intermediates decreased.
View Article and Find Full Text PDFSmall
January 2025
School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
As an oxidant, the ferryl-oxo complex (Fe═O) offers excellent reactivity and selectivity for degrading recalcitrant organic contaminants. However, enhancing Fe═O generation on heterogeneous surfaces remains challenging because the underlying formation mechanism is poorly understood. This study introduces edge defects onto a single-atom Fe catalyst (FeNC-edge) to promote Fe═O generation via peroxymonosulfate (PMS) activation.
View Article and Find Full Text PDFSmall
January 2025
Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, P. R. China.
A nitrogen-coordinated Fe single-atom catalyst (SA Fe-N/C) is synthesized using a homogeneous ethanol-based dissolution system with bamboo kraft lignin serving as the carbon source. Uniformly dispersed Fe atoms with an interatomic distance of less than 2 Å throughout the SA Fe-N/C structure are revealed through X-ray absorption spectral analysis and HAADF-STEM images, which possessed a high Fe loading of 2.69%.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!