Breast cancer (BC) is the most prevalent malignancy affecting women worldwide. Although conventional treatments such as chemotherapy, surgery, hormone therapy, radiation therapy, and biological therapy are commonly used, they often entail significant side effects. Therefore, there is a critical need to investigate more cost-effective and efficient treatment modalities in BC. Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, play a crucial role in modulating recipient cell behaviour and driving cancer progression. Among the EVs, exosomes provide valuable insights into cellular dynamics under both healthy and diseased conditions. In cancer, exosomes play a critical role in driving tumor progression and facilitating the development of drug resistance. BC-derived exosomes (BCex) dynamically influence BC progression by regulating cell proliferation, immunosuppression, angiogenesis, metastasis, and the development of treatment resistance. Additionally, BCex serve as promising diagnostic markers in BC which are detectable in bodily fluids such as urine and saliva. Targeted manipulation of BCex holds significant therapeutic potential. This review explores the therapeutic and diagnostic implications of exosomes in BC, underscoring their relevance to the disease. Furthermore, it discusses future directions for exosome-based research in BC, emphasizing the necessity for further exploration in this area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cca.2024.117875 | DOI Listing |
Breast Cancer Res
January 2025
Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road, Hangzhou, Zhejiang, China.
Background: Neoadjuvant chemotherapy (NACT) is the standard-of-care treatment for patients with locally advanced breast cancer (LABC), providing crucial benefits in tumor downstaging. Clinical parameters, such as molecular subtypes, influence the therapeutic impact of NACT. Moreover, severe adverse events delay the treatment process and reduce the effectiveness of therapy.
View Article and Find Full Text PDFBMC Cancer
January 2025
Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, 37 Andre Cavalcanti Street, 5th floor, Annex Building, 20231050, Rio de Janeiro, Brazil.
Background: Breast cancer (BC) has exhibited varied epidemiological trends based on distinct age categories. This research aimed to explore the incidence and mortality rates of BC within pre-defined age groups in the Brazilian population.
Methods: BC incidence trends were assessed from 2010 to 2015 using Brazilian Population-Based Cancer Registries, employing age-standardized ratios and annual average percentage change (AAPC).
BMC Med Imaging
January 2025
Electronics and Communications, Arab Academy for Science, Heliopolis, Cairo, 2033, Egypt.
Invasive breast cancer diagnosis and treatment planning require an accurate assessment of human epidermal growth factor receptor 2 (HER2) expression levels. While immunohistochemical techniques (IHC) are the gold standard for HER2 evaluation, their implementation can be resource-intensive and costly. To reduce these obstacles and expedite the procedure, we present an efficient deep-learning model that generates high-quality IHC-stained images directly from Hematoxylin and Eosin (H&E) stained images.
View Article and Find Full Text PDFMed Phys
January 2025
Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China.
Background: This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM).
Purpose: To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance.
Methods: A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions.
Breast Cancer Res Treat
January 2025
University of Pittsburgh School of Medicine (Center for Clinical Genetics and Genomics), Pittsburgh, PA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!