Exposure to organic solvents is associated with various health problems, including neurodegenerative diseases. Among these solvents, 1,2-diethylbenzene is notable for its ability to produce a toxic metabolite, 1,2-Diacetylbenzene (DAB), which can cause memory impairment. Prolactin (PRL) is theorized to protect the central nervous system. Certain antipsychotic drugs, known for increasing PRL secretion, have shown to improve cognitive performance in psychotic Alzheimer's patients. Among these, amisulpride stands out for its high efficacy, limited side effects, and high selectivity for dopamine D2 receptors. In our study, we explored the potential of amisulpride to inhibit DAB-induced neurotoxicity via PRL activation. Our results show that amisulpride enhances the PRL/JAK/STAT, PI3K/AKT, and BDNF/ERK/CREB pathways, playing critical roles in PRL's neuroprotection pathways and memory formation. Additionally, amisulpride inhibited DAB-triggered NLRP3 inflammasome activation and apoptosis. Collectively, these findings suggest that amisulpride may be a promising therapeutic intervention for DAB-induced neurotoxicity, partly through activating the PRL pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.etap.2024.104418 | DOI Listing |
Environ Toxicol Pharmacol
April 2024
Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Jeonnam 57922, Republic of Korea. Electronic address:
Neurotoxicology
December 2023
Neural Regeneration Laboratory, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Division of Neural Regeneration and Repair, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Department of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan. Electronic address:
1,2-diacetylbenzene (1,2-DAB) is a neurotoxic component of aromatic solvents commonly used in industrial applications that induces neuropathological changes in animals. This study unraveled the toxic impact of 1,2-DAB in nerve tissues, explant cultures, and neuron-glial cultures, and explored whether herbal products can mitigate its toxicity. The effects of DAB on axonal transport were studied in retinal explant cultures grown in a micro-patterned dish.
View Article and Find Full Text PDFToxicology
January 2008
Department of Biochemistry and Molecular Biology, Yeungnam University, Daegu 705-717, Republic of Korea.
Environmental substances or metabolites induce neuronal damage through oxidative stress. Environmental organic solvent metabolite, 1,2-diacetylbenzene (1,2-DAB), treated rats develop limb weakness with neuropathological damage in both the central and peripheral nervous systems. In this experiment, we examined the relevance of 1,2-DAB-induced toxicity to increased oxidative stress using human dopaminergic neuroblastoma SHSY5Y cells.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2001
Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon 97201, USA.
Several widely used aromatic hydrocarbon solvents reportedly induce blue-green discoloration of tissues and urine in animals and humans. The chomophore has been proposed to result from a ninhydrin-like reaction with amino groups in proteins. The present study examines the neurotoxic property of 1,2-diacetylbenzene (1,2-DAB), the active metabolite of the chromogenic and neurotoxic aromatic solvent 1,2-diethylbenzene.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!