Biofouling has been a persistent problem hindering the application of membranes in water treatment, and quorum quenching has been identified as an effective method for mitigating biofouling, but surface accumulation of live bacteria still induces biofilm secretion, which poses a significant challenge for sustained prevention of membrane biofouling. In this study, we utilized quercetin, a typical flavonoid with the dual functions of quorum quenching and bacterial inactivation, to evaluate its role in preventing biofilm proliferation and against biofouling. Quercetin exhibited excellent antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and the decreased bioactivity was positively correlated with the quercetin concentration, with inhibition rates of 53.1 % and 57.4 %, respectively, at the experimental concentrations. The RT-qPCR results demonstrated that quercetin inhibited AI-2 of E. coli and AGR of S. aureus mediated quorum sensing system, and reduced the expression of genes such as adhesion, virulence, biofilm secretion, and key regulatory proteases. As a result, the bacterial growth cycle was retarded and the biomass and biofilm maturation cycles were alleviated with the synergistic effect of quorum quenching and antibacterial activity. In addition, membrane biofouling was significantly declined in the dynamic operation experiments, dead cells in the biofilm overwhelmingly dominated, and the final normalized water fluxes were increased by more than 49.9 % and 34.5 % for E. coli and S. aureus, respectively. This work demonstrates the potential for mitigating biofouling using protocols that quorum quenching and inactivate bacteria, also provides a unique and long-lasting strategy to alleviate membrane fouling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121462 | DOI Listing |
J Appl Microbiol
January 2025
G.B. Elyakov Pacific Institute of Bioorganic Chemistry FEB RAS; 690022 Vladivostok, Russia.
Aims: The aim of this study was to evaluate the antioxidant and anti-inflammatory effects of marine fungal cerebroside flavuside B (FlaB) on Staphylococcus aureus-infected keratinocytes in in vitro skin wounds and to identify FlaB targets in bacterial and human cells.
Methods And Results: A combination of ELISA, plate spectrofluorimetry, and flow cytometry with fluorescence dye staining, scratch assay, and real-time cell imaging techniques was used to investigate the effects of FlaB on S. aureus-infected HaCaT keratinocytes.
Drug Des Devel Ther
January 2025
Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
In recent years, the incidence of fungal infections has been rising annually, especially among immunocompromised populations, posing a significant challenge to public health. Although antifungal medications provide some relief, the escalating problem of resistance sharply curtails their effectiveness, presenting an urgent clinical dilemma that demands immediate attention. Research has shown that fungal resistance is closely related to quorum sensing (QS), and QS inhibitors (QSIs) are considered an effective solution to this issue.
View Article and Find Full Text PDFJ Virol
December 2024
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, Beijing, China.
Unlabelled: Quorum sensing (QS) can regulate diverse critical phenotypic responses in (), enabling bacterial adaptation to external environmental fluctuations and optimizing population advantages. While there is emerging evidence of QS's involvement in influencing phage infections, our current understanding remains limited, necessitating further investigation. In this study, we isolated and characterized a novel phage designated as BUCT640 that infected PAO1.
View Article and Find Full Text PDFmSystems
December 2024
River Ecosystems Laboratory, Alpine and Polar Environmental Research Center, Ecole Polytechnique Fédérale de Lausanne (EPFL), Sion, Switzerland.
Unlabelled: Glacier-fed streams are permanently cold, ultra-oligotrophic, and physically unstable environments, yet microbial life thrives in benthic biofilm communities. Within biofilms, microorganisms rely on secondary metabolites for communication and competition. However, the diversity and genetic potential of secondary metabolites in glacier-fed stream biofilms remain poorly understood.
View Article and Find Full Text PDFNat Prod Res
January 2025
Vocational School of Health Services, Suleyman Demirel University, Isparta, Turkey.
The study aims to evaluate the Quorum Sensing (QS) system inhibition against some Gram-positive and Gram-negative bacteria detected by molecular modeling of R. cathartica L. plant extract.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!