Prussian blue analogues improves the microenvironment after spinal cord injury by regulating Zn.

Int Immunopharmacol

Department of Orthopedic of the Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China; Key Laboratory of Medical Tissue Engineering, Jinzhou Medical University, Jinzhou, Liaoning Province 121000, China. Electronic address:

Published: April 2024

Mitochondrial injury, neuronal apoptosis and phenotypic transformation of macrophages are the main mechanisms of spinal cord injury. Based on the Prussian blue nanomase's strong ability to clear free radicals, the treatment of spinal cord injury with nano-zirconium (Pb-Zr) was carried out. The disease treatment strategy based on nanomaterials has excellent therapeutic effect, and Prussian blue analogs have good therapeutic properties, so the application prospects of Prussian blue analogs is broad. From the point of view of Prussian blue content, improving the presence of zirconium in the microenvironment significantly increased the activity of Prussian blue. Prussian Blue zirconium significantly improved lipopolysaccharide (LPS) and interferon (IFN-γ) induced neuronal cell (pc12 cells) and macrophage dysfunction by improving oxidative stress, inflammation, and apoptosis in the microenvironment. It can promote the recovery of motor function after spinal cord injury. In vivo experiments, it shows that Prussian blue zirconium can improve inflammation, apoptosis and oxidative stress of spinal cord tissue, promote regenerative therapy after spinal cord injury, and improve motor function. Moreover, it has been reported that high-priced Zr cations can regulate the deposition and nucleation behavior of Zn in high-performance zinc metal anodes. Therefore, we propose the hypothesis that Pb-Zr modulates Zn be used to promote recovery from spinal cord injury. The results show that nanomaterial is beneficial in the treatment of spinal cord injury. This study provides a good prospect for the application of spinal cord injury treatment. It also provides an important feasibility for subsequent clinical conversions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2024.111868DOI Listing

Publication Analysis

Top Keywords

spinal cord
36
prussian blue
32
cord injury
32
spinal
9
cord
9
injury
9
prussian
8
treatment spinal
8
blue analogs
8
blue zirconium
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!