Hypothesis: Imogolite nanotubes (INTs) are unique anisometric particles with monodisperse nanometric diameters. Aluminogermanate double-walled INTs (Ge-DWINTs) are obtained with variable aspect ratios by controlling the synthesis conditions. It thus appears as an interesting model system to investigate how aspect ratio and ionic valence influence the colloidal behavior of highly anisometric rods.

Experiments: The nanotubes were synthesized by hydrothermal treatment for 5 or 20 days to modify the aspect ratio while the electrostatic interactions were investigated by comparing the colloidal stability in symmetric and asymmetric electrolytes. The phase behavior and their related microstructure were determined by optical observations and small-angle X-ray scattering measurements, coupled with interparticle distance modelling.

Findings: We revealed that colloidal suspensions of Ge-DWINTs prepared in NaCl are guided by repulsive double layer forces, undergoing different liquid crystal phase transitions before stiffen into a glass-like state. We found that the microstructure can be rationalized by taking into account the anisometric nature of the particles. By contrast, dispersions prepared with asymmetric electrolytes are governed by strong attractive forces and thus form space-filling gels containing large nanotubes aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.03.046DOI Listing

Publication Analysis

Top Keywords

aspect ratio
12
asymmetric electrolytes
12
phase behavior
8
symmetric asymmetric
8
colloidal
4
colloidal phase
4
behavior high
4
aspect
4
high aspect
4
ratio clay
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!