A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RSAFormer: A method of polyp segmentation with region self-attention transformer. | LitMetric

RSAFormer: A method of polyp segmentation with region self-attention transformer.

Comput Biol Med

Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, University of Granada, Granada 18071, Spain. Electronic address:

Published: April 2024

Colonoscopy has attached great importance to early screening and clinical diagnosis of colon cancer. It remains a challenging task to achieve fine segmentation of polyps. However, existing State-of-the-art models still have limited segmentation ability due to the lack of clear and highly similar boundaries between normal tissue and polyps. To deal with this problem, we propose a region self-attention enhancement network (RSAFormer) with a transformer encoder to capture more robust features. Different from other excellent methods, RSAFormer uniquely employs a dual decoder structure to generate various feature maps. Contrasting with traditional methods that typically employ a single decoder, it offers more flexibility and detail in feature extraction. RSAFormer also introduces a region self-attention enhancement module (RSA) to acquire more accurate feature information and foster a stronger interplay between low-level and high-level features. This module enhances uncertain areas to extract more precise boundary information, these areas being signified by regional context. Extensive experiments were conducted on five prevalent polyp datasets to demonstrate RSAFormer's proficiency. It achieves 92.2% and 83.5% mean Dice on Kvasir and ETIS, respectively, which outperformed most of the state-of-the-art models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.108268DOI Listing

Publication Analysis

Top Keywords

region self-attention
12
state-of-the-art models
8
self-attention enhancement
8
rsaformer
4
rsaformer method
4
method polyp
4
polyp segmentation
4
segmentation region
4
self-attention transformer
4
transformer colonoscopy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!