A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Can I trust my fake data - A comprehensive quality assessment framework for synthetic tabular data in healthcare. | LitMetric

AI Article Synopsis

  • - The safe adoption of AI tools in healthcare requires adequate training data, and synthetic data is proposed as a solution to privacy concerns but has complex quality evaluation challenges from various metrics.
  • - A literature review led to the creation of a conceptual framework for quality assurance of synthetic healthcare data, which was tested against a case from the Dutch National Cancer Registry.
  • - The framework enhances traditional quality measures by adding dimensions like Fairness and Carbon footprint, promoting transparency and trust in synthetic data to facilitate the development of reliable AI tools in healthcare.

Article Abstract

Background: Ensuring safe adoption of AI tools in healthcare hinges on access to sufficient data for training, testing and validation. Synthetic data has been suggested in response to privacy concerns and regulatory requirements and can be created by training a generator on real data to produce a dataset with similar statistical properties. Competing metrics with differing taxonomies for quality evaluation have been proposed, resulting in a complex landscape. Optimising quality entails balancing considerations that make the data fit for use, yet relevant dimensions are left out of existing frameworks.

Method: We performed a comprehensive literature review on the use of quality evaluation metrics on synthetic data within the scope of synthetic tabular healthcare data using deep generative methods. Based on this and the collective team experiences, we developed a conceptual framework for quality assurance. The applicability was benchmarked against a practical case from the Dutch National Cancer Registry.

Conclusion: We present a conceptual framework for quality assuranceof synthetic data for AI applications in healthcare that aligns diverging taxonomies, expands on common quality dimensions to include the dimensions of Fairness and Carbon footprint, and proposes stages necessary to support real-life applications. Building trust in synthetic data by increasing transparency and reducing the safety risk will accelerate the development and uptake of trustworthy AI tools for the benefit of patients.

Discussion: Despite the growing emphasis on algorithmic fairness and carbon footprint, these metrics were scarce in the literature review. The overwhelming focus was on statistical similarity using distance metrics while sequential logic detection was scarce. A consensus-backed framework that includes all relevant quality dimensions can provide assurance for safe and responsible real-life applications of synthetic data. As the choice of appropriate metrics are highly context dependent, further research is needed on validation studies to guide metric choices and support the development of technical standards.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijmedinf.2024.105413DOI Listing

Publication Analysis

Top Keywords

synthetic data
20
data
11
quality
8
synthetic tabular
8
quality evaluation
8
literature review
8
conceptual framework
8
framework quality
8
quality dimensions
8
fairness carbon
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: