A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photochemical modification of tea waste by tungsten oxide nanoparticle as a novel, low-cost and green photocatalyst for degradation of dye pollutant. | LitMetric

So far, many adsorbents and nanocomposites have been synthesized by different methods and used to remove or degradation of dye pollutants. Nowadays, the use of natural adsorbents and their modification with simple methods based on metal oxides are of interest to many researchers. In this study, for the first time, we report the simple and low-cost modification of tea pomace waste (TPW) with tungsten oxide (WO) based on the photochemical method as a green, cost-effective, and biodegradable photocatalyst for the degradation of Rh B dye pollutant. The results obtained from FE-SEM, EDAX, XRD, XPS, PL, BET and UV-Vis Diffusive Reflectance (DRS) analyses confirmed the successful modification of the TPW surface with WO (WO/TPW). The parameters affecting the photocatalytic behavior of WO/TPW, including the time of photochemical modification and the type of radiation on its photocatalytic activity, were carefully optimized. WO/TPW showed excellent photocatalytic activity compared to TPW for the degradation of Rh B dye pollutant under UV light for 30 min (94 %). Finally, the effective parameters on the value of Rh B dye degradation by WO/TPW photocatalyst including pH, adsorbent dosage, the concentration of dye pollutant, and the kinetics of the degradation process were studied. It is expected that this type of photochemical modification method and natural WO/TPW photocatalyst will be a promising path for the synthesis, modification, and increase of the photocatalytic performance of natural adsorbents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2024.124104DOI Listing

Publication Analysis

Top Keywords

degradation dye
16
dye pollutant
16
photochemical modification
12
modification tea
8
tungsten oxide
8
photocatalyst degradation
8
natural adsorbents
8
photocatalytic activity
8
wo/tpw photocatalyst
8
degradation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!