Dual-Responsive Supramolecular Polymeric Nanomedicine for Self-Cascade Amplified Cancer Immunotherapy.

Adv Sci (Weinh)

Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China.

Published: May 2024

AI Article Synopsis

  • Insufficient immunogenicity and immune escape are major challenges in tumor immunotherapy, but recent research highlights pyroptosis as a way to trigger effective immune responses.
  • NCSNPs, a new type of nanomedicine, combine a nitric oxide donor for inducing pyroptosis and an IDO inhibitor to enhance T cell activity, improving the efficacy of cancer treatments.
  • This innovative approach not only initiates cell death in tumors but also modifies the tumor environment to promote stronger immune responses against cancer.

Article Abstract

Insufficient tumor immunogenicity and immune escape from tumors remain common problems in all tumor immunotherapies. Recent studies have shown that pyroptosis, a form of programmed cell death that is accompanied by immune checkpoint inhibitors, can induce effective immunogenic cell death and long-term immune activation. Therapeutic strategies to jointly induce pyroptosis and reverse immunosuppressive tumor microenvironments are promising for cancer immunotherapy. In this regard, a dual-responsive supramolecular polymeric nanomedicine (NCSNPs) to self-cascade amplify the benefits of cancer immunotherapy is designed. The NCSNPs are formulated by β-cyclodextrin coupling nitric oxide (NO) donor, a pyroptosis activator, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, and self-assembled through host-guest molecular recognition and hydrophobic interaction to obtain nanoparticles. NCSNPs possess excellent tumor accumulation and bioavailability attributed to ingenious supramolecular engineering. The study not only confirms the occurrence of NO-triggered pyroptosis in tumors for the first time but also reverses the immunosuppressive microenvironment in tumor sites via an IDO inhibitor by enhancing the infiltration of cytotoxic T lymphocytes, to achieve remarkable inhibition of tumor proliferation. Thus, this study provides a novel strategy for cancer immunotherapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132052PMC
http://dx.doi.org/10.1002/advs.202305382DOI Listing

Publication Analysis

Top Keywords

cancer immunotherapy
16
dual-responsive supramolecular
8
supramolecular polymeric
8
polymeric nanomedicine
8
cell death
8
ido inhibitor
8
tumor
6
nanomedicine self-cascade
4
self-cascade amplified
4
cancer
4

Similar Publications

Objectives: The lack of definitive biomarkers presents a significant challenge for chemo-immunotherapy in extensive-stage small-cell lung cancer (ES-SCLC). We aimed to identify key genes associated with chemo-immunotherapy efficacy in ES-SCLC through comprehensive gene expression analysis using machine learning (ML).

Methods: A prospective multicenter cohort of patients with ES-SCLC who received first-line chemo-immunotherapy was analyzed.

View Article and Find Full Text PDF

Colorectal cancer (CRC) ranks third globally in cancer incidence and mortality, posing a significant human concern. Recent advancements in immunotherapy are noteworthy. This study explores immune modulation for CRC treatment.

View Article and Find Full Text PDF

The metabolic landscape of cancer greatly influences antitumor immunity, yet it remains unclear how organ-specific metabolites in the tumor microenvironment influence immunosurveillance. We found that accumulation of primary conjugated and secondary bile acids (BAs) are metabolic features of human hepatocellular carcinoma and experimental liver cancer models. Inhibiting conjugated BA synthesis in hepatocytes through deletion of the BA-conjugating enzyme bile acid-CoA:amino acid -acyltransferase (BAAT) enhanced tumor-specific T cell responses, reduced tumor growth, and sensitized tumors to anti-programmed cell death protein 1 (anti-PD-1) immunotherapy.

View Article and Find Full Text PDF

Modifications to rhesus macaque TCR constant regions improve TCR cell surface expression.

PLoS One

January 2025

AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America.

T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.

View Article and Find Full Text PDF

A data management system for precision medicine.

PLOS Digit Health

January 2025

Clinical Care & Research, ORTEC B.V., Zoetermeer, The Netherlands.

Precision, or personalised medicine has advanced requirements for medical data management systems (MedDMSs). MedDMS for precision medicine should be able to process hundreds of parameters from multiple sites, be adaptable while remaining in sync at multiple locations, real-time syncing to analytics and be compliant with international privacy legislation. This paper describes the LogiqSuite software solution, aimed to support a precision medicine solution at the patient care (LogiqCare), research (LogiqScience) and data science (LogiqAnalytics) level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!