Commercial ion-exchange membranes are typically thick, possessing limited mechanical strength, and have relatively high fabrication costs. In this study, we utilize a three-layer polypropylene fabric known as Spunbond Meltblown Spunbond (SMS) as the substrate. This choice ensures that the resulting membrane exhibits high strength and low thickness. SMS substrates with various area densities, including 14.5, 15, 17, 20, 25, and 30 g/m, were coated with different concentrations of waste polystyrene solution (ranging from 5 × 10 to 9 × 10 mg/l) before undergoing sulfonation using concentrated sulfuric acid. The physicochemical and mechanical properties of the membrane were characterized and compared with those of commercial Neosepta CMX and Nafion-117 cation-exchange membranes. Remarkably, the fabricated membrane exhibited good performance compared to commercial ones. The cation-exchange capacity (2.76 meq/g) and tensile strength (37.15 MPa) were higher, and the electrical resistance (3.603Ω) and the thickness (130 μm) were lower than the commercial membranes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944457PMC
http://dx.doi.org/10.1038/s41598-024-56961-yDOI Listing

Publication Analysis

Top Keywords

waste polystyrene
8
spunbond meltblown
8
meltblown spunbond
8
spunbond sms
8
polypropylene fabric
8
fabrication pore-filling
4
pore-filling cation-exchange
4
membrane
4
cation-exchange membrane
4
membrane waste
4

Similar Publications

The improper disposal of plastic products/wastes can lead to the release of nanoplastics (NPs) into environmental media, especially soil. Nevertheless, their toxicity mechanisms in soil invertebrates remain unclear. This study investigated the impact of polystyrene NPs on (, 1826) immune cells, focusing on oxidative stress, immune responses, apoptosis, and necrosis.

View Article and Find Full Text PDF

The increasing demand for sustainable resources has revived the research on cellulose over the last decades. Therefore, the current research focused on the synthesis of biopolymers for the development of viable tableware utensils from cellulose of coconut coir. The synthesized biopolymer was characterized by using Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray diffraction (XRD), tensile strength, and contact angle.

View Article and Find Full Text PDF

Acrylonitrile-butadiene-styrene (ABS) is a thermoplastic copolymer commonly used in the electronics, automotive, and construction industries. In the aquatic environment, the formation of microplastics from larger-sized plastic waste occurs naturally, induced by physical, chemical, and biological processes that promote the aging of these particles. Here, we investigated the interactions between the freshwater amphipod and ABS microplastics (10-20 μm) (pristine and after accelerated aging) over 7 days of exposure.

View Article and Find Full Text PDF

Upcycling Poly(vinyl chloride) and Polystyrene Plastics Using Photothermal Conversion.

J Am Chem Soc

January 2025

Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.

Poly(vinyl chloride) (PVC) and polystyrene (PS) are among the least recycled plastics. In this work, we developed a simple and novel strategy to valorize PVC and PS plastics via photothermal conversion to (1-chloroethyl)benzene, a commodity chemical with excellent versatility. As PVC is known to release HCl gas and decompose into conjugated polyenes, we envisioned a dual role for PVC plastics.

View Article and Find Full Text PDF

Discovery of potentially degrading microflora of different types of plastics based on long-term in-situ incubation in the deep sea.

Environ Res

January 2025

Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen, 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.

Plastic waste that ends up in the deep sea is becoming an increasing concern. However, it remains unclear whether there is any microflora capable of degrading plastic within this vast ecosystem. In this study, we investigated the bacterial communities associated with different types of plastic-polyamide-nylon 4, 6 (PA), polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-after one year of in situ incubation in the pelagic deep sea of the Western Pacific.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!