Future perspectives on the roles of mitochondrial dynamics in the heart in obesity and aging.

Life Sci

Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand. Electronic address:

Published: May 2024

Increasing global obesity rates and an aging population are independently linked to cardiac complications. Consequently, it is crucial to comprehensively understand the mechanisms behind these conditions to advance innovative therapies for age-related diseases. Mitochondrial dysfunction, specifically defects in mitochondrial fission/fusion processes, has emerged as a central regulator of cardiac complications in aging and age-related diseases (e.g., obesity). Since excessive fission and impaired fusion of cardiac mitochondria lead to disruptions in mitochondrial dynamics and cellular metabolism in aging and obesity, modulating mitochondrial dynamics with either fission inhibitors or fusion promoters has offered cardioprotection against these pathological conditions in preclinical models. This review explores the molecular mechanisms governing mitochondrial dynamics as well as the disturbances observed in aging and obesity. Additionally, pharmaceutical interventions that specifically target the processes of mitochondrial fission and fusion are presented and discussed. By establishing a connection between mitochondrial dynamism through fission and fusion and the advancement or mitigation of age-related diseases, particularly obesity, this review provides valuable insights into the progression and potential prevention strategies for such conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2024.122575DOI Listing

Publication Analysis

Top Keywords

mitochondrial dynamics
16
age-related diseases
12
mitochondrial
8
cardiac complications
8
diseases obesity
8
aging obesity
8
fission fusion
8
obesity
6
aging
5
future perspectives
4

Similar Publications

Background: Glycyrrhiza glabra, which is widely used in medicine and therapy, is known as the 'king of traditional Chinese medicine'. In this study, we successfully assembled and annotated the mitochondrial and chloroplast genomes of G. glabra via high-throughput sequencing technology, combining the advantages of short-read (Illumina) and long-read (Oxford Nanopore) sequencing.

View Article and Find Full Text PDF

Dynamin-Related Protein 1 Orchestrates Inflammatory Responses in Periodontal Macrophages via Interaction With Hexokinase 1.

J Clin Periodontol

January 2025

Department of Oral Implantology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.

Aim: To explore the potential roles of mitochondrial dysfunction in the initiation of inflammation in periodontal macrophages and to determine the mechanism underlying the involvement of dynamin-related protein 1 (Drp1) in macrophage inflammatory responses through its interaction with hexokinase 1 (HK1).

Materials And Methods: Gingival tissues were collected from patients diagnosed with periodontitis or from healthy volunteers. Drp1 tetramer formation and phosphorylation were analysed using western blot.

View Article and Find Full Text PDF

Tooth root development is a complex process essential for tooth function, yet the role of root dentin development in tooth morphogenesis is not fully understood. Optineurin (OPTN), linked to bone disorders like Paget's disease of bone (PDB), may affect tooth root development. In this study, we used single-cell sequencing of embryonic day 16.

View Article and Find Full Text PDF

Bone defect repair remains a great challenge in the field of orthopedics. Human body essential trace element such as copper is essential for bone regeneration, but how to use it in bone defects and the underlying its mechanisms of promoting bone formation need to be further explored. In this study, by doping copper into mesoporous bioactive glass nanoparticles (Cu-MBGNs), we unveil a previously unidentified role of copper in facilitating osteoblast mitophagy and mitochondrial dynamics, which enhance amorphous calcium phosphate (ACP) release and subsequent biomineralization, ultimately accelerating the process of bone regeneration.

View Article and Find Full Text PDF

This paper presents the development of near-infrared (NIR) fluorescent probes, and , engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes and exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 () and 702 nm (), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!